Thermal Relic Targets with Exponentially Small Couplings.

Phys Rev Lett

Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, New York 10003, USA.

Published: April 2020

If dark matter was produced in the early Universe by the decoupling of its annihilations into known particles, there is a sharp experimental target for the size of its coupling. We show that if dark matter was produced by inelastic scattering against a lighter particle from the thermal bath, then its coupling can be exponentially smaller than the coupling required for its production from annihilations. As an application, we demonstrate that dark matter produced by inelastic scattering against electrons provides new thermal relic targets for direct detection and fixed target experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.151801DOI Listing

Publication Analysis

Top Keywords

dark matter
12
matter produced
12
thermal relic
8
relic targets
8
produced inelastic
8
inelastic scattering
8
targets exponentially
4
exponentially small
4
small couplings
4
couplings dark
4

Similar Publications

Multispectral Integrated Black Arsenene Phototransistors for High-Resolution Imaging and Enhanced Secure Communication.

ACS Nano

December 2024

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.

The demand for broadband, room-temperature infrared, and terahertz (THz) detectors is rapidly increasing owing to crucial applications in telecommunications, security screening, nondestructive testing, and medical diagnostics. Current photodetectors face significant challenges, including high intrinsic dark currents and the necessity for cryogenic cooling, which limit their effectiveness in detecting low-energy photons. Here, we introduce a high-performance ultrabroadband photodetector operating at room temperature based on two-dimensional black arsenene (b-As) nanosheets.

View Article and Find Full Text PDF

Unveiling the crucial role of iron oxide transformation in simultaneous immobilization of nanoplastics and organic matter.

Sci Total Environ

December 2024

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.

Nanoplastics (NPs) have been found in natural environments. However, the sequestration of NPs and natural organic matter (NOM) coupled with the Fe(III) hydrolysis and subsequent iron oxides transformation remains unclear. Here, we investigated the behaviors of NPs during the dynamic transformation process of iron oxides in the presence of humic acids (HA).

View Article and Find Full Text PDF

Sponge exhalent metabolites influence coral reef picoplankton dynamics.

Sci Rep

December 2024

Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.

Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.

View Article and Find Full Text PDF

Canine mammary carcinomas (CMCs) represent the most prevalent form of cancer in female dogs, characterized by a high incidence and mortality rate. C6 ceramide is recognized for its multifaceted anti-cancer properties, yet its specific influence on CMCs remains to be elucidated. Long noncoding RNAs (lncRNAs), now recognized as functional "dark matter" in precision oncology, are particularly intriguing, with 44% of canine lncRNAs exhibiting tissue-specific expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!