Locally mobile bond-vectors contribute to the conformational entropy of the protein, given by ≡ / = -∫( ln )dΩ - ln∫dΩ. The quantity = exp(-)/ is the orientational probability density, where is the partition function and is the spatially restricting potential exerted by the immediate internal protein surroundings at the site of the motion of the bond-vector. It is appropriate to expand the potential, , which restricts local rotational reorientation, in the basis set of the real combinations of the Wigner rotation matrix elements, . For small molecules anisotropic media, one typically keeps the lowest even , = 2, potential in axial or rhombic form. For bond-vectors the protein, the lowest odd , = 1, potential is to be used in axial or rhombic form. . For = 1 ( = 2), is the same (differs) for parallel and perpendicular ordering. The plots of as a function of the coefficients of the rhombic = 1 ( = 2) potential exhibit high-symmetry (specific low-symmetry) patterns with parameter-range-dependent sensitivity. Similar statements apply to analogous plots of the potential minima. is also examined as a function of the order parameters defined in terms of . Graphs displaying these correlations, and applications illustrating their usage, are provided. The features delineated above are generally useful for devising orienting potentials that best suit given physical circumstances. They are particularly useful for bond-vectors acting as NMR relaxation probes in proteins, when their restricted local motion is analyzed with stochastic models featuring Wigner-function-made potentials. The relaxation probes could also be molecules adsorbed at surfaces, inserted into membranes, or interlocked within metal-organic frameworks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467720PMC
http://dx.doi.org/10.1021/acs.jpcb.0c02662DOI Listing

Publication Analysis

Top Keywords

conformational entropy
8
nmr relaxation
8
potential axial
8
axial rhombic
8
rhombic form
8
relaxation probes
8
potential
6
entropy restricted
4
restricted bond-vector
4
bond-vector motion
4

Similar Publications

Entropy-Driven Molecular Beacon Assisted Special RCA Assay with Enhanced Sensitivity for Room Temperature DNA Biosensing.

Biosensors (Basel)

December 2024

CUHKSZ-Boyalife Regenerative Medicine Engineering Joint Laboratory, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.

The Phi29 DNA polymerase is renowned for its processivity in synthesizing single-stranded DNA amplicons by rolling around a circularized DNA template. However, DNA synthesis rolling circle amplification (RCA) is significantly hindered by the secondary structure in the circular template. To overcome this limitation, an engineered circular template without secondary structure could be utilized to improve the sensitivity of RCA-based assays without increasing its complexity.

View Article and Find Full Text PDF

Designing mimosine-containing peptides as efficient metal chelators: Insights from molecular dynamics and quantum calculations.

J Inorg Biochem

December 2024

Faculty of Chemistry (UPV/EHU), Manuel Lardizabal 3, Donostia-San Sebastian 20018, Spain; DIPC, Manuel Lardizabal 4, Donostia-San Sebastian 20018, Spain. Electronic address:

Mimosine, a non-essential amino acid derived from plants, has a strong affinity for binding divalent and trivalent metal cations, including Zn, Ni, Fe, and Al. This ability endows mimosine with significant antimicrobial and anti-cancer properties, making it a promising candidate for therapeutic applications. Previous research has demonstrated the effectiveness of mimosine-containing peptides as metal chelators, offering a safer alternative to conventional chelation agents.

View Article and Find Full Text PDF

Orientational Disorder and Molecular Correlations in Hybrid Organic-Inorganic Perovskites: From Fundamental Insights to Technological Applications.

ACS Appl Mater Interfaces

December 2024

Group of Characterization of Materials, Departament de Física, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona 08019, Spain.

Hybrid organic-inorganic perovskites (HOIP) have emerged in recent years as highly promising semiconducting materials for a wide range of optoelectronic and energy applications. Nevertheless, the rotational dynamics of the organic components and many-molecule interdependencies, which may strongly impact the functional properties of HOIP, are not yet fully understood. In this study, we quantitatively analyze the orientational disorder and molecular correlations in archetypal perovskite CHNHPbI (MAPI) by performing comprehensive molecular dynamics simulations and entropy calculations.

View Article and Find Full Text PDF

In this study, the interaction mechanism between Si quantum dots (SiQDs) and bovine serum albumin (BSA), as well as the conformational and functional alterations of BSA, were rigorously investigated via multispectral techniques and dynamic light scattering analysis. van der Waals forces and hydrogen bonding, as well as an exothermic reaction and a decrease in entropy, were the primary forces involved in the binding of SiQDs to BSA. In the binding process, SiQDs exhibit preferential proximity to Site I over other potential binding sites.

View Article and Find Full Text PDF

We theoretically investigate how the intranuclear environment influences the charge of a nucleosome core particle (NCP)-the fundamental unit of chromatin consisting of DNA wrapped around a core of histone proteins. The molecular-based theory explicitly considers the size, shape, conformation, charge, and chemical state of all molecular species-thereby linking the structural state with the chemical/charged state of the system. We investigate how variations in monovalent and divalent salt concentrations, as well as pH, affect the charge distribution across different regions of an NCP and quantify the impact of charge regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!