Objective: In this study we aimed to evaluate whether there is a link between circulating 25-OH-D levels and molecular response in chronic myeloid leukemia (CML).
Material And Method: A total of 61 patients with CML (31 women, 30 men) were recruited in this cross-sectional study.
Results: Binary logistic regression analysis demonstrated that increased vitamin D levels were independently associated with molecular response in subjects with CML.
Conclusion: Our results indicated for the first time in the literature that severe deficiency of vitamin D was independently associated with molecular unresponsiveness in subjects with CML. 25-OH-D may be contributing to molecular response in the patients (Tab. 3, Ref. 24).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4149/BLL_2020_059 | DOI Listing |
J Clin Invest
January 2025
Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, United States of America.
Background: Myotonic dystrophy type 1 (DM1) is a multisystemic, CTG repeat expansion disorder characterized by a slow, progressive decline in skeletal muscle function. A biomarker correlating RNA mis-splicing, the core pathogenic disease mechanism, and muscle performance is crucial for assessing response to disease-modifying interventions. We evaluated the Myotonic Dystrophy Splice Index (SI), a composite RNA splicing biomarker incorporating 22 disease-specific events, as a potential biomarker of DM1 muscle weakness.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
Purpose: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Chiclayo, Peru.
Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
This study aims to investigate the role of cuprotosis in fluorosis and identify potential targeted drugs for its treatment. The GSE70719 and GSE195920 datasets were merged using the inSilicoMerging package. DEGs between the exposure and control groups were found using R software.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300392, China.
Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!