As a first step in achieving an evidence-based classification system for the sport of Para Dressage, there is a clear need to define elite dressage performance. Previous studies have attempted to quantify performance with able-bodied riders using scientific methods; however, definitive measures have yet to be established for the horse and/or the rider. This may be, in part, due to the variety of movements and gaits that are found within a dressage test and also due to the complexity of the horse-rider partnership. The aim of this review is therefore to identify objective measurements of horse performance in dressage and the functional abilities of the rider that may influence them to achieve higher scores. Five databases (SportDiscuss, CINAHL, MEDLINE, EMBASE, VetMed) were systematically searched from 1980 to May 2018. Studies were included if they fulfilled the following criteria: (1) English language; (2) employ objective, quantitative outcome measures for describing equine and human performance in dressage; (3) describe objective measures of superior horse performance using between-subject comparisons and/or relating outcome measures to competitive scoring methods; (4) describe demands of dressage using objective physiological and/or biomechanical measures from human athletes and/or how these demands are translated into superior performance. In total, 773 articles were identified. Title and abstract screening resulted in 155 articles that met the eligibility criteria, 97 were excluded during the full screening of articles, leaving 58 included articles (14 horse, 44 rider) involving 311 equine and 584 able-bodied human participants. Mean ± sd (%) quality scores were 63.5 ± 15.3 and 72.7 ± 14.7 for the equine and human articles respectively. Significant objective measures of horse performance ( = 12 articles) were grouped into themes and separated by gait/movement. A range of temporal variables that indicated superior performance were found in all gaits/movements. For the rider,  = 5 articles reported variables that identified significant differences in skill level, which included the postural position and ROM of the rider's pelvis, trunk, knee and head. The timing of rider pelvic and trunk motion in relation to the movement of the horse emerged as an important indicator of rider influence. As temporal variables in the horse are consistently linked to superior performance it could be surmised that better overall dressage performance requires minimal disruption from the rider whilst the horse maintains a specific gait/movement. Achieving the gait/movement in the first place depends upon the intrinsic characteristics of the horse, the level of training achieved and the ability of the rider to apply the correct aid. The information from this model will be used to develop an empirical study to test the relative strength of association between impairment and performance in able-bodied and Para Dressage riders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185025PMC
http://dx.doi.org/10.7717/peerj.9022DOI Listing

Publication Analysis

Top Keywords

performance
12
performance dressage
12
horse performance
12
superior performance
12
dressage
9
horse
9
para dressage
8
dressage performance
8
performance able-bodied
8
rider
8

Similar Publications

Objective: TRIB3 has been confirmed to participate in and regulate biological metabolic activities in head and neck tumors such as nasopharyngeal carcinoma and oropharyngeal carcinoma, so the purpose of this study was to explore whether there is a correlation between TRIB3 and Laryngeal Squamous Cell Carcinoma (LSCC) and to preliminarily explore the biological characteristics of TRIB3 in LSCC.

Methods: TRIB3 expression in the LSCC was analyzed based on The Cancer Genome Atlas (TCGA) database. CCK-8 assay, Colony Formation Assay, wound healing assay, and Transwell assay were performed to investigate the roles of TRIB3 in the proliferation, invasion and metastasis of LSCC.

View Article and Find Full Text PDF

Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.

View Article and Find Full Text PDF

Simulation of fluid flow with Cuprophan and AN69ST membranes in the dialyzer during hemodialysis.

Biomed Phys Eng Express

January 2025

Ingeniería y Tecnología, Universidad Nacional Autonoma de Mexico Facultad de Estudios Superiores Cuautitlan, Av. 1o de Mayo S/N, Santa María las Torres, Campo Uno, 54740 Cuautitlán Izcalli, Edo. de Méx., Cuautitlan Izcalli, Estado de México, 54740, MEXICO.

Hemodialysis is a crucial procedure for removing toxins and waste from the body when kidneys fail to perform this function effectively. This study addresses the need to improve the efficiency and biocompatibility of membranes used in dialyzers. We simulate fluid flow through two types of membranes, Cuprophan (cellulosic) and AN69ST (synthetic), to understand the complex mechanisms involved and quantify key variables such as pressure, concentration, and flow.

View Article and Find Full Text PDF

In the medical field, endoscopic video analysis is crucial for disease diagnosis and minimally invasive surgery. The Endoscopic Foundation Models (Endo- FM) utilize large-scale self-supervised pre-training on endoscopic video data and leverage video transformer models to capture long-range spatiotemporal dependencies. However, detecting complex lesions such as gastrointestinal metaplasia (GIM) in endoscopic videos remains challenging due to unclear boundaries and indistinct features, and Endo-FM has not demonstrated good performance.

View Article and Find Full Text PDF

Optimizing Transformer-Based Network via Advanced Decoder Design for Medical Image Segmentation.

Biomed Phys Eng Express

January 2025

Shandong University, No. 72, Binhai Road, Jimo, Qingdao City, Shandong Province, Qingdao, 266200, CHINA.

U-Net is widely used in medical image segmentation due to its simple and flexible architecture design. To address the challenges of scale and complexity in medical tasks, several variants of U-Net have been proposed. In particular, methods based on Vision Transformer (ViT), represented by Swin UNETR, have gained widespread attention in recent years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!