Effects of Landscape Pattern Change on Water Yield and Nonpoint Source Pollution in the Hun-Taizi River Watershed, China.

Int J Environ Res Public Health

CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Published: April 2020

Understanding the influence of landscape pattern changes on water yield (WYLD) and nutrient yield is a key topic for water resource management and nonpoint source (NPS) pollution reduction. The annual WYLD and NPS pollution were estimated in 2004 and 2015 with the calibrated and validated Soil and Water Assessment Tool (SWAT) in the Hun-Taizi River watershed. The impact of land use and landscape pattern changes on the annual WYLD and NPS loading changes were analyzed with a boosted regression tree (BRT) and redundancy analysis (RDA). The results showed that WYLD had a positive correlation with dry farmland and built-up area; however, a negative correlation with paddy field and water area, with the relative contribution of 42.03%, 23.79%, 17.06%, and 13.55%, respectively. The change in nutrient yield was positively correlated with changes in dry farmland, built-up area, and water area but negatively with forestland, according to the BRT model. Landscape patterns had an important influence on WYLD and NPS pollution. A large unfragmented forestland may improve water quality, while a large concentrated dry farmland results in water quality deterioration due to NPS pollution. Water quality is more likely degraded when land uses are complex and scattered with many small patches in a forestland dominated watershed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246484PMC
http://dx.doi.org/10.3390/ijerph17093060DOI Listing

Publication Analysis

Top Keywords

nps pollution
16
landscape pattern
12
wyld nps
12
dry farmland
12
water quality
12
water
9
water yield
8
nonpoint source
8
hun-taizi river
8
river watershed
8

Similar Publications

UV-Aged Nanoplastics Increase Mercury Toxicity in a Marine Copepod under Multigenerational Exposure: A Carrier Role.

Environ Sci Technol

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.

Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.

View Article and Find Full Text PDF

Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.

View Article and Find Full Text PDF

A potential eco-friendly degradation of methyl orange by water-ball (sodium polyacrylate) stabilized zero valent iron nanoparticles.

Heliyon

January 2025

Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia.

This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles.

View Article and Find Full Text PDF

Micro-nanoscale polystyrene co-exposure impacts the uptake and translocation of arsenic and boscalid by lettuce (Lactuca sativa).

NanoImpact

January 2025

Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA.

The influence of micro-nanoplastics (MNPs) on the fate and effects of other pollutants present in the environment is largely unknown. This study evaluated if the root exposure to MNPs (polystyrene, PS; 20 or 1000 nm) had an impact on the accumulation of arsenic and boscalid (As and Bos) in lettuce (Lactuca sativa). Under hydroponic conditions, plants were co-exposed to MNPs at 10 or 50 mg/L, and to 1 mg/L of each environmental pollutant (EP).

View Article and Find Full Text PDF

Amplification of benzo[a]pyrene toxicity persistence in earthworms by polystyrene nanoplastics: From organismal health to molecular responses.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.. Electronic address:

Typically, nanoplastics (NPs) are contaminated before entering soil, and the impact of NPs on the biotoxicity of Persistent Organic Pollutants (POPs) they carry remains unclear. This study simulated two environmentally relevant scenarios: singular exposure of benzo[a]pyrene (BaP) in soil and exposure via NPs loading (NP-BaP). Correlation analysis and machine learning revealed that injury in earthworms exposed for 28 days was significantly associated with NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!