The neuroprotective effect of Kaempferol against cadmium chloride (CdCl) -induced neurotoxicity is well reported. The silent information regulator 1 (SIRT1) and poly (ADP-Ribose) polymerase-1 (PARP1) are two related cellular molecules that can negatively affect the activity of each other to promote or inhibit cell survival, respectively. It is still largely unknown if the neurotoxicity of CdCl or the neuroprotection of Kaempferol are mediated by modulating SIRT1 and/or PAPR1 activities. In this study, we tested the hypothesis that CdCl-induced memory deficit and hippocampal damage are associated with downregulation/inhibition of SIRT1 and activation of PAPR1, an effect that can be reversed by co-treatment with Kaempferol. Rats (n = 12/group) were divided into 4 groups as control, control + Kaempferol (50 mg//kg), CdCl (0.5 mg/kg), and CdCl + Kaempferol. All treatments were administered orally for 30 days daily. As compared to control rats, CdCl2 reduced rat's final body weights (21.8%) and their food intake (30%), induced oxidative stress and apoptosis in their hippocampi, and impaired their short and long-term recognition memory functions. Besides, the hippocampi of CdCl-treated rats had higher levels of TNF-α (197%), and IL-6 (190%) with a concomitant increase in nuclear activity and levels of NF-κB p65 (721% & 554%). Besides, they showed reduced nuclear activity (53%) and levels (74%) of SIRT1, higher nuclear activity and levels of PARP1 (292% & 138%), increased nuclear levels of p53 (870%), and higher acetylated levels of NF-κB p65 (513%), p53 (644%), PARP1 (696%), and FOXO-2 (149%). All these events were significantly reversed in the CdCl + Kaempferol-treated rats. Of note, Kaempferol also increased levels of MnSOD (73.5%), and GSH (40%), protein levels of Bcl-2 (350%), and nuclear activity (67%) and levels (46%) of SIRT1 in the hippocampi of the control rats. In conclusion, Kaempferol ameliorates CdCl-induced memory deficits and hippocampal oxidative stress, inflammation, and apoptosis by increasing SIRT1 activity and inhibiting PARP1 activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138832DOI Listing

Publication Analysis

Top Keywords

nuclear activity
16
levels
9
hippocampal damage
8
memory deficits
8
silent regulator
8
poly adp-ribose
8
adp-ribose polymerase-1
8
cdcl-induced memory
8
control rats
8
oxidative stress
8

Similar Publications

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Tailoring rhodium-based metal-organic layers for parahydrogen-induced polarization: achieving 20% polarization of H in liquid phase.

Natl Sci Rev

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Heterogeneous catalysts for parahydrogen-induced polarization (HET-PHIP) would be useful for producing highly sensitive contrasting agents for magnetic resonance imaging (MRI) in the liquid phase, as they can be removed by simple filtration. Although homogeneous hydrogenation catalysts are highly efficient for PHIP, their sensitivity decreases when anchored on porous supports due to slow substrate diffusion to the active sites and rapid depolarization within the channels. To address this challenge, we explored 2D metal-organic layers (MOLs) as supports for active Rh complexes with diverse phosphine ligands and tunable hydrogenation activities, taking advantage of the accessible active sites and chemical adaptability of the MOLs.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!