A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. | LitMetric

Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia.

Sci Total Environ

Center for Environmental Science, College of Natural and Computational Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.

Published: August 2020

Information on soil loss and sediment export is essential to identify hotspots of soil erosion to inform conservation interventions in a given watershed. This study investigates the dynamics of soil loss and sediment export associated with land-use/land cover changes and identifying soil loss hotspot areas in the Winike watershed of the Omo-Gibe Basin of Ethiopia. Spatial data collected from satellite images, topographic maps, meteorological and soil data were analyzed. The land-use types in the study area were categorized into six: cultivated land, woodland, forest, grazing, shrubland, and bare land. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) of the sediment delivery ratio (SDR) model was used based on the analysis of land use/land cover and RUSLE factors. The results show that total soil loss increased from 774.86 thousand tons in 1988 to 951.21 thousand tons in 2018 while the corresponding sediment export increased by 3.85 thousand tons for the same period. These were subsequently investigated in each land-use type. Cultivated fields generated the highest soil erosion rate, increasing from 10.02 t/ha/year in 1988 to 43.48 t/ha/year in 2018 when compared with the grazing, shrub, forest, wood land and bare land-use types. This corresponds with the expansion of the cultivated area. This is logical as the correlation between soil loss and sediment delivery and expansion of cultivated area is highly significant (p < 0.001). Sub-watershed six (SW-6) showed the highest soil loss (23.17 t/ha/year) while sub-watershed two (SW- 2) has the lowest soil loss (5.54 t/ha/year). This is because SW-2 is situated in the lower reaches of the watershed under dense vegetation cover experiencing less erosion. The findings on the erosion hotspots presented in this study allow prioritizing the segments of the watershed that need immediate application of improved management interventions and informed decision-making processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138776DOI Listing

Publication Analysis

Top Keywords

soil loss
20
soil erosion
12
sediment delivery
12
loss sediment
12
sediment export
12
soil
9
land use/land
8
use/land cover
8
winike watershed
8
basin ethiopia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!