Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study was to improve methane generation from corn stalk (CS) through alkaline hydrogen peroxide and lithium chloride/N,N-dimethylacetamide (AHP-LiCl/DMAc) pretreatment. Changes in the structures of treated and untreated CSs were investigated, and biomass components, including cellulose, hemicellulose and lignin, were analysed. Our findings revealed that AHP-LiCl/DMAc pretreatment improved accumulative methane yield by forceful delignification and effectively destroyed the structure of cellulose. The AHP-LiCl/DMAc-treated group had a maximum methane yield of 318.6 ± 17.85 mL/g volatile solid, which was 40.08% and 10.10% higher than the maximum methane yields of the untreated and AHP-treated group, respectively. This result showed enhanced cellulose dissolution by the ionic solvent of LiCl/DMAc and improved enzymatic saccharification in fermentative bacteria without structural modifications. The AHP-LiCl/DMAc treated group had higher glucose level, acetate followed by biomethanation process. Furthermore, the decrease in crystallinity indexes for AHP-LiCl/DMAc treated group was reported. Overall, this investigation proved a promising pretreatment approach for enhancing the degradation of CS into reducing sugars and improving methane generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2020.109563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!