A comprehensive monitoring of a broad set of antibiotics in the final effluent of wastewater treatment plants (WWTPs) of 7 European countries (Portugal, Spain, Ireland, Cyprus, Germany, Finland, and Norway) was carried out in two consecutive years (2015 and 2016). This is the first study of this kind performed at an international level. Within the 53 antibiotics monitored 17 were detected at least once in the final effluent of the WWTPs, i.e.: ciprofloxacin, ofloxacin, enrofloxacin, orbifloxacin, azithromycin, clarithromycin, sulfapyridine, sulfamethoxazole, trimethoprim, nalidixic acid, pipemidic acid, oxolinic acid, cefalexin, clindamycin, metronidazole, ampicillin, and tetracycline. The countries exhibiting the highest effluent average concentrations of antibiotics were Ireland and the southern countries Portugal and Spain, whereas the northern countries (Norway, Finland and Germany) and Cyprus exhibited lower total concentration. The antibiotic occurrence data in the final effluents were used for the assessment of their impact on the aquatic environment. Both, environmental predicted no effect concentration (PNEC-ENVs) and the PNECs based on minimal inhibitory concentrations (PNEC-MICs) were considered for the evaluation of the impact on microbial communities in aquatic systems and on the evolution of antibiotic resistance, respectively. Based on this analysis, three compounds, ciprofloxacin, azithromycin and cefalexin are proposed as markers of antibiotic pollution, as they could occasionally pose a risk to the environment. Integrated studies like this are crucial to map the impact of antibiotic pollution and to provide the basis for designing water quality and environmental risk in regular water monitoring programs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2020.105733DOI Listing

Publication Analysis

Top Keywords

final effluents
8
wastewater treatment
8
treatment plants
8
impact aquatic
8
aquatic environment
8
final effluent
8
countries portugal
8
portugal spain
8
antibiotic pollution
8
antibiotic
5

Similar Publications

Due to the global outbreaks caused by pathogens, disinfection has attracted widespread attention, especially as the final inactivation step in wastewater treatment plants (WWTPs). Ultraviolet (UV) radiation is regarded as one of low carbon disinfection methods without chemical agents, but in practice, the effects are sometimes unsatisfactory, e.g.

View Article and Find Full Text PDF

Meeting the needs of a growing population calls for a change from linear production systems that exacerbate the depletion of finite natural resources and the emission of environmental pollutants. These linear production systems have resulted in the human-driven perturbation of the Earth's natural biogeochemical cycles and the transgression of environmentally safe operating limits. One solution that can help alleviate the environmental issues associated both with resource stress and harmful emissions is resource recovery from waste.

View Article and Find Full Text PDF

The fate of intracellular and extracellular antibiotic resistance genes during ultrafiltration-ultraviolet-chlorination in a full-scale wastewater tretament plant.

J Hazard Mater

January 2025

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia. Electronic address:

Effluent from wastewater treatment plants (WWTPs) is recognized as a significant source of antibiotic resistance genes (ARGs) in the environment. Advanced treatment processes such as ultrafiltration (UF), ultraviolet (UV) light disinfection, and chlorination have emerged as promising approaches for ARG removal. However, the efficacy of sequential disinfection processes, such as UF-UV-chlorination on intracellular (iARGs) and extracellular ARGs (eARGs), remains largely unknown.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are one of the major collection points of microplastics (MPs). The MPs in influents and effluents of WWTPs were assessed for three cities on the southern coast of the Caspian Sea in the winter and spring seasons. The MP removal rate of WWTPs ranged between 71.

View Article and Find Full Text PDF

Untreated wastewater from the brewing industry poses significant environmental risks due to its high organic content. Therefore, this study evaluates the wastewater treatment system at Heineken Brewery in Addis Ababa, Ethiopia. Key parameters analyzed include COD, BOD₅, TSS, pH, ammonia (NH₃), total nitrogen (TN), total phosphorus (TP), electrical conductivity (EC), temperature, turbidity, and volatile fatty acids (VFA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!