Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multiple molecular disorders can affect mechanisms regulating proliferation and differentiation of growth plate chondrocytes. Mutations in the TRIM37 gene cause the Mulibrey nanism, a heritable growth disorder. Since chondrocytes are instrumental in long bone growth that is deficient in nanism, we hypothesized that TRIM37 defect could contribute to dysregulation of the chondrocyte cell cycle. Western blotting, confocal microscopy and imaging flow cytometry determined TRIM37 expression in CHON-002 cell lineage. We showed that TRIM37 is expressed during mitosis of chondrocytes and directly impacted their proliferation. During the chondrocyte cell cycle, TRIM37 was present in both nucleus and cytoplasm. During M phase we observed an increase of the TRIM37-Tubulin co-localization in comparison with G1, S and G2 phases. TRIM37 knock down inhibited proliferation, together with cell cycle anomalies and increased autophagy, while overexpression accordingly enhanced cell proliferation. We demonstrated that microRNA-223 directly targets TRIM37, and suggest that miR-223 regulates TRIM37 gene expression during the cell cycle. In summary, our results give clues to explain why TRIM37 deficiency in chondrocytes impacts bone growth. Modulating TRIM37 using miR-223 could be an approach to increase chondrogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2020.115393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!