Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Drug resistance to bacteria becomes an emerging intractable problem, therefore, developing novel antibacterial agents has become urgently needed. Herein, a bio-inspired design strategy was adopted to synthesize a series of beetle-like macromolecule of multiple quaternary ammonium salts (QASs), which was designed with different cationic charge densities and numbers of hexadecane chains by adjusting their different quaternization degree (QD). It was found that the fabricated fabric surface with them exhibited controllable and outstanding antibacterial and bacterially anti-adhesive properties. More importantly, the antibacterial efficiency was demonstrated to be enhanced with the increasing of QD, and related to the zeta potential, and surface tension. Additionally, the proposed bacterially anti-adhesive model of action revealed the "resisting effect" of hydration layer which greatly resisted the adhesion of bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.04.207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!