A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Controllable antibacterial and bacterially anti-adhesive surface fabricated by a bio-inspired beetle-like macromolecule. | LitMetric

Controllable antibacterial and bacterially anti-adhesive surface fabricated by a bio-inspired beetle-like macromolecule.

Int J Biol Macromol

Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.

Published: August 2020

Drug resistance to bacteria becomes an emerging intractable problem, therefore, developing novel antibacterial agents has become urgently needed. Herein, a bio-inspired design strategy was adopted to synthesize a series of beetle-like macromolecule of multiple quaternary ammonium salts (QASs), which was designed with different cationic charge densities and numbers of hexadecane chains by adjusting their different quaternization degree (QD). It was found that the fabricated fabric surface with them exhibited controllable and outstanding antibacterial and bacterially anti-adhesive properties. More importantly, the antibacterial efficiency was demonstrated to be enhanced with the increasing of QD, and related to the zeta potential, and surface tension. Additionally, the proposed bacterially anti-adhesive model of action revealed the "resisting effect" of hydration layer which greatly resisted the adhesion of bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.04.207DOI Listing

Publication Analysis

Top Keywords

bacterially anti-adhesive
12
antibacterial bacterially
8
beetle-like macromolecule
8
controllable antibacterial
4
anti-adhesive surface
4
surface fabricated
4
fabricated bio-inspired
4
bio-inspired beetle-like
4
macromolecule drug
4
drug resistance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!