Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cellulose nanocrystals (CNCs) are of increasing interest for packaging applications because of their biodegradability, low cost, high crystallinity, and high aspect ratio. The objective of this study was to use positron annihilation lifetime spectroscopy (PALS) to investigate the free volume of CNC films with different structural arrangements (chiral nematic vs shear-oriented CNC films) and relate this information to gas barrier performance. It was found that sheared CNC films with higher CNC alignment have lower free volume and hence have more tortuosity than chiral nematic self-assembled films, which lowers gas diffusion throughout the films. The overall barrier performance of the aligned CNC film obtained in this study has a higher barrier performance than high barrier polymer films like PVOH and EVOH. Furthermore, a modified model was developed for single-component CNC films to predict the gas permeability with variation of CNC alignment with validation by the data taken.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c05738 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!