A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Homologous Recombination Repair Truncations Predict Hypermutation in Microsatellite Stable Colorectal and Endometrial Tumors. | LitMetric

Introduction: Somatic mutations in BRCA1/2 and other homologous recombination repair (HRR) genes have been associated with sensitivity to PARP inhibitors and/or platinum agents in several cancers, whereas hypermutant tumors caused by alterations in POLE or mismatch repair genes have demonstrated robust responses to immunotherapy. We investigated the relationship between somatic truncations in HRR genes and hypermutation in colorectal cancer (CRC) and endometrial cancer (EC).

Methods: We analyzed the mutational spectra associated with somatic BRCA1/2 truncations in multiple genomic cohorts (N = 2,335). From these results, we devised a classifier incorporating HRR genes to predict hypermutator status among microsatellite stable (MSS) tumors. Using additional genomic cohorts (N = 1,439) and functional in vivo assays, we tested the classifier to disambiguate POLE variants of unknown significance and identify MSS hypermutators without somatic POLE exonuclease domain mutations.

Results: Hypermutator phenotypes were prevalent among CRCs with somatic BRCA1/2 truncations (50/62, 80.6%) and ECs with such mutations (44/47, 93.6%). The classifier predicted MSS hypermutators with a cumulative true-positive rate of 100% in CRC and 98.0% in EC and a false-positive rate of 0.07% and 0.63%. Validated by signature analyses of tumor exomes and in vivo assays, the classifier accurately reassigned multiple POLE variants of unknown significance as pathogenic and identified MSS hypermutant samples without POLE exonuclease domain mutations.

Discussion: Somatic truncations in HRR can accurately fingerprint MSS hypermutators with or without known pathogenic exonuclease domain mutations in POLE and may serve as a low-cost biomarker for immunotherapy decisions in MSS CRC and EC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145036PMC
http://dx.doi.org/10.14309/ctg.0000000000000149DOI Listing

Publication Analysis

Top Keywords

hrr genes
12
mss hypermutators
12
exonuclease domain
12
homologous recombination
8
recombination repair
8
microsatellite stable
8
somatic truncations
8
truncations hrr
8
somatic brca1/2
8
brca1/2 truncations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!