Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.

Adv Healthc Mater

Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.

Published: August 2020

3D bioprinting involves the combination of 3D printing technologies with cells, growth factors and biomaterials, and has been considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM). However, despite multiple breakthroughs, it is evident that numerous challenges need to be overcome before 3D bioprinting will eventually become a clinical solution for a variety of TERM applications. To produce a 3D structure that is biologically functional, cell-laden bioinks must be optimized to meet certain key characteristics including rheological properties, physico-mechanical properties, and biofunctionality; a difficult task for a single component bioink especially for extrusion based bioprinting. As such, more recent research has been centred on multicomponent bioinks consisting of a combination of two or more biomaterials to improve printability, shape fidelity and biofunctionality. In this article, multicomponent hydrogel-based bioink systems are systemically reviewed based on the inherent nature of the bioink (natural or synthetic hydrogels), including the most current examples demonstrating properties and advances in application of multicomponent bioinks, specifically for extrusion based 3D bioprinting. This review article will assist researchers in the field in identifying the most suitable bioink based on their requirements, as well as pinpointing current unmet challenges in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201901648DOI Listing

Publication Analysis

Top Keywords

multicomponent hydrogel-based
8
extrusion based
8
based bioprinting
8
multicomponent bioinks
8
bioprinting
5
advances extrusion
4
extrusion bioprinting
4
bioprinting focus
4
multicomponent
4
focus multicomponent
4

Similar Publications

Antifreeze proteins and surface-modified cellulose nanocrystals for designing anti-freezing conductive hydrogel sensors.

Carbohydr Polym

February 2025

School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

Antifreeze proteins (AFPs) are a type of protein capable of inhibiting ice crystal growth, lowering the freezing point, and protecting organisms from cold-induced damage. In this study, cellulose nanocrystals (CNCs) are chemically modified to enhance the hydrogel's performance. The synergistic effect with AFPs further regulates its mechanical properties, antifreeze performance, and high sensing sensitivity.

View Article and Find Full Text PDF

In this study, an eco-friendly and novel hydrogel based on a crosslinked polyvinyl alcohol (PVA), iota carrageenan (IC) and polyvinylpyrrolidone (PVP) scaffold, containing a large amount (10-50 wt%) of nanoscale palm fronds (NPF) as additives, for water purification was demonstrated. A life cycle assessment (LCA) findings on NPF as biomass waste incorporated into PVA_PVP_IC polymer matrix was presented, and the results highlight the necessity of focused actions to reduce environmental impact and support the palm waste utilization in a sustainable manner. The multicomponent nanocomposite hydrogels were examined as adsorbents in a system work in batches for methylene blue (MB) and paracetamol (PCT) removal.

View Article and Find Full Text PDF

Multicomponent biomolecular self-assembly is fundamental for accomplishing complex functionalities of biosystems. Self-assembling peptides, amino acids, and their conjugates serve as a versatile platform for developing biomaterials. However, the co-assembly of multiple building blocks showing synergistic interplay between individual components and producing biomaterials with emergent functional attributes is much less explored.

View Article and Find Full Text PDF

The advent of three-dimensional (3D) bioprinting offers a feasible approach to construct complex structures for soft tissue regeneration. Carboxymethyl cellulose (CMC) has been emerging as a very promising biomaterial for 3D bioprinting. However, due to the inability to maintain the post-printed stability, CMC needs to be physically blended and/or chemically crosslinked with other polymers.

View Article and Find Full Text PDF

Bacterial invasion hinders the healing process of wound, leading to the formation of chronic infected wound; meanwhile, the misuse of antibiotics has resulted in the emergence of numerous drug-resistant bacteria. The application of conventional antimicrobial methods and wound treatment techniques is not appropriate for wound dressings. In this paper, quaternized poly(vinyl alcohol) (QPVA) and pomegranate-like copper uniformly doped polydopamine nanoparticles (PDA@Cu) were introduced into a gelatin-oxidized carboxymethyl cellulose system to form a multicomponent synergistic antibacterial hydrogel (GOQP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!