Latency is an important feature of infectious laryngotracheitis virus (ILTV) yet is poorly understood. This study aimed to compare latency characteristics of vaccine (SA2) and field (CL9) strains of ILTV, establish an reactivation system and examine ILTV infection in peripheral blood mononuclear cells (PBMC) in specific pathogen-free chickens. Birds were inoculated with SA2 or CL9 ILTV and then bled and culled at 21 or 35 days post-inoculation (dpi). Swabs (conjunctiva, palatine cleft, trachea) and trigeminal ganglia (TG) were examined for ILTV DNA using PCR. Half of the TG, trachea and PBMC were co-cultivated with cell monolayers to assess reactivation of ILTV infection. ILTV DNA was detected in the trachea of approximately 50% of ILTV-inoculated birds at both timepoints. At 21 dpi, ILTV was detected in the TG only in 29% and 17% of CL9- and SA2-infected birds, respectively. At 35 dpi, ILTV was detected in the TG only in 30% and 10% of CL9- and SA2-infected birds, respectively. Tracheal organ co-cultures from 30% and 70% of CL9- and SA2-infected birds, respectively, were negative for ILTV DNA at cull but yielded quantifiable DNA within 6 days post-explant (dpe). TG co-cultivation from 30% and 40% of CL9-and SA2-infected birds, respectively, had detectable ILTV DNA within 6 dpe. Latency characteristics did not substantially vary based on the strain of virus inoculated or between sampling timepoints. These results advance our understanding of ILTV latency and reactivation. Following inoculation, latent ILTV infection was detected in a large proportion of chickens, irrespective of whether a field or vaccine strain was inoculated. reactivation of latent ILTV was readily detected in tracheal and trigeminal ganglia co-cultures using PCR. ILTV latency observed in SPF chickens at 21 days post-infection was not substantially different to 35 days post-infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03079457.2020.1754331 | DOI Listing |
Microorganisms
October 2024
Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China.
Infectious laryngotracheitis virus (ILTV) exhibits a cascade expression pattern of encoded genes, and is the only immediate-early gene of ILTV, which plays a crucial role in initiating the subsequent viral genes. Therefore, studying the transcriptional regulation mechanism of holds promise for effectively blocking ILTV infection and spread. Host transcriptional factors p53 and Fos are proven to regulate a variety of viral infections, and our previous studies have demonstrated their synergistic effects in regulating ILTV infection.
View Article and Find Full Text PDFViruses
June 2023
Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China.
The novel variant IBDV (nVarIBDV, especially genotype A2dB1) mainly affects broilers in China. It causes an infection characterized by the atrophy of the bursa, a decrease in the level of lymphocytes, proliferation of fibrous tissue around the follicle, and severe atrophy of the follicle in the bursa. Poultry vaccinated with live IBDV vaccines do not have the challenge present with bursa atrophy, which is misdiagnosed for nVarIBDV because of the lack of other gross clinical symptoms.
View Article and Find Full Text PDFVet Sci
April 2023
Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi 100000, Vietnam.
To date, many fluorescence- and gel-based multiplex polymerase chain reaction (PCR) assays have been developed for the simultaneous detection of multiple infectious agents of respiratory disease in poultry. However, PCR assays are not available for other important emerging respiratory bacteria, such as (ORT). We aimed to fill this gap by establishing a new duplex PCR method for the simultaneous detection of infectious laryngotracheitis virus (ILTV) and ORT.
View Article and Find Full Text PDFJ Virol
April 2023
Institute of Molecular Virology and Cell Biology, Friedrich Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
The genomes of numerous herpesviruses have been cloned as infectious bacterial artificial chromosomes. However, attempts to clone the complete genome of infectious laryngotracheitis virus (ILTV), formally known as Gallid alphaherpesvirus-1, have been met with limited success. In this study, we report the development of a cosmid/yeast centromeric plasmid (YCp) genetic system to reconstitute ILTV.
View Article and Find Full Text PDFBraz J Microbiol
December 2022
Department of Pathology, School of VeterinaryMedicine, University of São Paulo (USP), Av. Prof. Dr. Orlando M. Paiva, 87, São Paulo, SP, CEP 05508-270, Brazil.
Avian infectious laryngotracheitis (ILT) is a respiratory disease that causes severe economic losses in the poultry industry, mainly due to high morbidity and mortality and reduced egg production. Molecular characterization was performed on samples collected from flocks in the Brazilian States of São Paulo, Pernambuco, and Minas Gerais during 2015 and 2016 that presented clinical signs of respiratory disease. End-point PCR was used for viral detection, and DNA sequencing was used for differentiation of vaccine and field strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!