High-responsivity photodevices are strongly desired for various demanding applications, such as optical communications, logic circuits, and sensors. The use of quantum and photon confinement has enabled a true revolution in the development of high-performance devices. Unfortunately, many practical optoelectronic devices exhibit intermediate sizes where resonant enhancement effects seem to be insignificant. Here we design and fabricate an ultra-high-responsivity organic-light-emitting-diode-induced nanowire resonance phototransistor (ONRPT) based on standing-wave resonance in the nanoscale cavity, subjected to a near-field light. Observations of the ONRPT in standing-wave resonance mode indicate a >10 enhancement in the on/off ratio and a six times higher subthreshold slope when compared with the ONRPT in non-resonance mode. The ONRPT, which leads itself to outstanding electrical and favorably stable performance, opens up a plethora of opportunities for high-efficiency energy devices and allows for nanowire applications in the solar cell, piezo-photonic detectors, and optical modulators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c00993 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!