Promoting the Efficiency and Stability of CsPbIBr-Based All-Inorganic Perovskite Solar Cells through a Functional Cu Doping Strategy.

ACS Appl Mater Interfaces

WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6845, Australia.

Published: May 2020

Although organic-inorganic halide perovskite solar cells (PSCs) have shown dramatically enhanced power conversion efficiencies (PCEs) in the last decade, their long-term stability is still a critical challenge for commercialization. To address this issue, tremendous research efforts have been devoted to exploring all-inorganic PSCs because of their intrinsically high structural stability. Among them, CsPbIBr-based all-inorganic PSCs have drawn increasing attention owing to their suitable band gap and favorable stability. However, the PCEs of CsPbIBr-based PSCs are still far from those of their organic-inorganic counterparts, thus inhibiting their practical applications. Herein, we demonstrate that by simply doping an appropriate amount of Cu into a CsPbIBr perovskite lattice (0.5 at. % to Pb), the perovskite crystallinity and grain size are increased, the perovskite film morphology is improved, the energy level alignment is optimized, and the trap density and charge recombination are reduced. As a consequence, a decent PCE improvement from 7.81 to 10.4% is achieved along with an enhancement ratio of 33% with a CsPbIBr-based PSC. Furthermore, the long-term stability of CsPbIBr-based PSCs against moisture and heat also remarkably improved by Cu doping. This work provides a facile and effective route to improve the PCE and long-term stability of CsPbIBr-based all-inorganic PSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c04938DOI Listing

Publication Analysis

Top Keywords

stability cspbibr-based
16
cspbibr-based all-inorganic
12
long-term stability
12
all-inorganic pscs
12
perovskite solar
8
solar cells
8
cspbibr-based pscs
8
stability
6
cspbibr-based
6
pscs
6

Similar Publications

Objective: Reverse obliquity intertrochanteric fracture is an unstable type of fracture. Current guidelines recommend intramedullary fixation, but there are still complications such as screw removal, hip varus, nail withdrawal, and nail fracture. The objective of this study was to use finite element analysis to compare the biomechanical properties of the novel proximal femoral bionic nail (PFBN), proximal femoral nail antirotation (PFNA), and combined compression interlocking intramedullary nail (InterTan) in the treatment of reverse obliquity intertrochanteric fractures (AO/OTA 31-A3.

View Article and Find Full Text PDF

Coumarin Analogues as Promising Anti-Obesity Agents: In Silico Design, Synthesis, and In Vitro Pancreatic Lipase Inhibitory Activity.

Chem Biol Drug Des

January 2025

Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, Rajasthan, India.

A set of coumarin-3-carboxamide analogues were designed, synthesized, and evaluated for their ability to impede pancreatic lipase (PL) activity. Out of all the analogues, 5dh and 5de demonstrated promising inhibitory activity against PL, as indicated by their respective IC values of 9.20 and 11.

View Article and Find Full Text PDF

Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.

View Article and Find Full Text PDF

To accelerate the water dissociation in the Volmer step and alleviate the destruction of bubbles to the physical structure of catalysts during the alkaline hydrogen evolution, an integrated electrode of cobalt oxide and cobalt-molybdenum oxide grown on Ni foam, named CoO-Co2Mo3O8, is designed. This integrated electrode enhances the catalyst-substrate interaction confirmed by a micro-indentation tester, and thus hinders the destruction of the physical structure of catalysts caused by bubbles. Electrochemical testing shows the occurrence of a surface reconstruction of the integrated electrode, and CoO is transformed into Co(OH)2, denoted as Co(OH)2-Co2Mo3O8.

View Article and Find Full Text PDF

In the pursuit of high-energy-density lithium metal batteries (LMBs), the development of stable solid electrolyte interphase (SEI) is critical to address issues such as lithium dendrite growth and low Coulombic efficiency. Herein, we propose a facile strategy for the in-situ fabrication of a LiCl-rich artificial SEI layer on Li surfaces through reaction of MoCl5 with Li (Li@MoCl5). The resulting artificial SEI significantly enhances the uniformity of Li deposition, effectively suppresses dendrite formation, and improves electrochemical performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!