A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Levitating Cells to Sort the Fit and the Fat. | LitMetric

Density is a core material property and varies between different cell types, mainly based on differences in their lipid content. Sorting based on density enables various biomedical applications such as multi-omics in precision medicine and regenerative repair in medicine. However, a significant challenge is sorting cells of the same type based on density differences. Here, a new method for real-time monitoring and sorting of single cells based on their inherent levitation profiles driven by their lipid content is reported. As a model system, human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) from a patient with neutral lipid storage disease (NLSD) due to loss of function of adipose triglyceride lipase (ATGL) resulting in abnormal lipid storage in cardiac muscle are used. This levitation-based strategy detects subpopulations within ATGL-deficient hiPSC-CMs with heterogenous lipid content, equilibrating at different levitation heights due to small density differences. In addition, sorting of these differentially levitating subpopulations are monitored in real time. Using this approach, sorted healthy and diseased hiPSC-CMs maintain viability and function. Pixel-tracking technologies show differences in contraction between NLSD and healthy hiPSC-CMs. Overall, this is a unique approach to separate diseased cell populations based on their intracellular lipid content that cannot be achieved using traditional flow cytometry techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adbi.201900300DOI Listing

Publication Analysis

Top Keywords

lipid content
16
based density
8
density differences
8
lipid storage
8
lipid
6
based
5
levitating cells
4
cells sort
4
sort fit
4
fit fat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!