TBHQ Attenuates Neurotoxicity Induced by Methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT Signaling Pathways.

Oxid Med Cell Longev

Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.

Published: February 2021

Methamphetamine (METH) leads to nervous system toxicity. Long-term exposure to METH results in damage to dopamine neurons in the ventral tegmental area (VTA), and depression-like behavior is a clinical symptom of this toxicity. The current study was designed to investigate whether the antioxidant tertiary butylhydroquinone (TBHQ) can alleviate neurotoxicity through both antioxidative stress and antiapoptotic signaling pathways in the VTA. Rats were randomly divided into a control group, a METH-treated group (METH group), and a METH+TBHQ-treated group (METH+TBHQ group). Intraperitoneal injections of METH at a dose of 10 mg/kg were administered to the rats in the METH and METH+TBHQ groups for one week, and METH was then administered at a dose that increased by 1 mg/kg per week until the sixth week, when the daily dosage reached 15 mg/kg. The rats in the METH+TBHQ group received 12.5 mg/kg TBHQ intragastrically. Chronic exposure to METH resulted in increased immobility times in the forced swimming test (FST) and tail suspension test (TST) and led to depression-like behavior. The production of reactive oxygen species (ROS) and apoptosis levels were increased in the VTA of animals in the METH-treated group. METH downregulated Nrf2, HO-1, PI3K, and AKT, key factors of oxidative stress, and the apoptosis signaling pathway. Moreover, METH increased the caspase-3 immunocontent. These changes were reversed by treatment with the antioxidant TBHQ. The results indicate that TBHQ can enhance Nrf2-induced antioxidative stress and PI3K-induced antiapoptotic effects, which can alleviate METH-induced ROS and apoptosis, and that the crosstalk between Nrf2 and PI3K/AKT is likely the key factor involved in the protective effect of TBHQ against METH-induced chronic nervous system toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174937PMC
http://dx.doi.org/10.1155/2020/8787156DOI Listing

Publication Analysis

Top Keywords

meth
9
signaling pathways
8
nervous system
8
system toxicity
8
exposure meth
8
depression-like behavior
8
antioxidative stress
8
meth-treated group
8
group meth
8
meth+tbhq group
8

Similar Publications

Verifiable measurement-based quantum random sampling with trapped ions.

Nat Commun

January 2025

Joint Center for Quantum Information and Computer Science (QuICS), University of Maryland & NIST, College Park, MD, USA.

Quantum computers are now on the brink of outperforming their classical counterparts. One way to demonstrate the advantage of quantum computation is through quantum random sampling performed on quantum computing devices. However, existing tools for verifying that a quantum device indeed performed the classically intractable sampling task are either impractical or not scalable to the quantum advantage regime.

View Article and Find Full Text PDF

Background: Researchers may often find it challenging to gather data with underserved populations, even when using traditional qualitative methods. They may also be at risk of further entrenching the hegemony of the dominant narrative, silencing participants' experiences and further marginalising and excluding those most in need. Timelines and other creative methods are useful, sensitive tools that combine flexibility and malleability with an ethical appeal, such as feminist ethics of care.

View Article and Find Full Text PDF

Methamphetamine (METH) is a highly addictive and dangerous drug that mainly affects neurotransmitters in the brain and leads to feelings of alertness and euphoria. The METH use can lead to addiction, which has become a worldwide problem, resulting in a slew of public health and safety issues. Recent studies showed that chronic METH use can lead to neurotoxicity, neuro-inflammation and oxidative stress which can lead to neuronal injury.

View Article and Find Full Text PDF

Therapeutic targeting of neuroinflammation in methamphetamine use disorder.

Future Med Chem

December 2024

Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.

Methamphetamine (METH) is a highly addictive illicit psychostimulant with a significant annual fatality rate. Emerging studies highlight its role in neuroinflammation and a range of neurological disorders. This review examines the current landscape of potential drug targets for managing neuroinflammation in METH use disorders (MUDs), with a particular focus on the rationale behind targeting Toll-like receptor 4 (TLR4), the NLR family pyrin domain containing 3 (NLRP3) inflammasome, and other promising targets.

View Article and Find Full Text PDF

Constructing mRNA-meth-miRNA single-sample networks to reveal the molecular interaction patterns induced by lunar orbital stressors in rice (Oryzasativa).

Plant Physiol Biochem

December 2024

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China. Electronic address:

To explore the bio-effects during Moon exploration missions, we utilized the Chang'E 5 probe to carry the seeds of Oryza. Sativa L., which were later returned to Earth after 23 days in lunar orbit and planted in an artificial climate chamber.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!