AI Article Synopsis

  • Bivalves are affected by environmental changes, particularly those caused by human activity, which can compromise their immune system.
  • The study focuses on the immune response of mussels exposed to amino-modified nanopolystyrene (PS-NH), assessing the effects of repeated exposure on various immune-related parameters.
  • Initial exposure led to significant changes in immune function, but after a second exposure, mussels demonstrated recovery and an increased immune response, suggesting their ability to adapt to stressors like nanoplastics.

Article Abstract

Bivalves are widespread in coastal environments subjected to a wide range of environmental fluctuations: however, the rapidly occurring changes due to several anthropogenic factors can represent a significant threat to bivalve immunity. The mussel spp. has extremely powerful immune defenses toward different potential pathogens and contaminant stressors. In particular, the mussel immune system represents a significant target for different types of nanoparticles (NPs), including amino-modified nanopolystyrene (PS-NH) as a model of nanoplastics. In this work, the effects of repeated exposure to PS-NH on immune responses of were investigated after a first exposure (10 μg/L; 24 h), followed by a resting period (72-h depuration) and a second exposure (10 μg/L; 24 h). Functional parameters were measured in hemocytes, serum, and whole hemolymph samples. In hemocytes, transcription of selected genes involved in proliferation/apoptosis and immune response was evaluated by qPCR. First exposure to PS-NH significantly affected hemocyte mitochondrial and lysosomal parameters, serum lysozyme activity, and transcription of proliferation/apoptosis markers; significant upregulation of extrapallial protein precursor (EPp) and downregulation of lysozyme and mytilin B were observed. The results of functional hemocyte parameters indicate the occurrence of stress conditions that did not however result in changes in the overall bactericidal activity. After the second exposure, a shift in hemocyte subpopulations, together with reestablishment of basal functional parameters and of proliferation/apoptotic markers, was observed. Moreover, hemolymph bactericidal activity, as well as transcription of five out of six immune-related genes, all codifying for secreted proteins, was significantly increased. The results indicate an overall shift in immune parameters that may act as compensatory mechanisms to maintain immune homeostasis after a second encounter with PS-NH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174705PMC
http://dx.doi.org/10.3389/fimmu.2020.00426DOI Listing

Publication Analysis

Top Keywords

shift immune
8
immune parameters
8
repeated exposure
8
exposure ps-nh
8
exposure μg/l
8
second exposure
8
functional parameters
8
bactericidal activity
8
parameters
6
exposure
6

Similar Publications

Metabolic Signaling in the Tumor Microenvironment.

Cancers (Basel)

January 2025

Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.

Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation.

View Article and Find Full Text PDF

The growing interest in minimal and non-invasive therapies, especially in the field of cancer treatment, highlights a significant shift toward safer and more effective options. Ablative therapies are well-established tools in cancer treatment, with known effects including locoregional control, while their role as modulators of the systemic immune response against cancer is emerging. The HIFU developed with magnetic resonance imaging (MRI) guidance enables treatment precision, improves real-time procedural control, and ensures accurate outcome assessment.

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) are vital dietary elements that play a significant role in human nutrition. They are highly regarded for their positive contributions to overall health and well-being. Beyond the fact that they provide a substantial supply of energy to the body (a role that saturated fats can also perform), these unsaturated fatty acids and, especially, the essential ones are involved in cell membrane structure, blood pressure regulation, and coagulation; participate in the proper functioning of the immune system and assimilation of fat-soluble vitamins; influence the synthesis of pro- and anti-inflammatory substances; and protect the cardiovascular system.

View Article and Find Full Text PDF

CD8+ and CD8- NK Cells and Immune Checkpoint Networks in Peripheral Blood During Healthy Pregnancy.

Int J Mol Sci

January 2025

Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.

Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.

View Article and Find Full Text PDF

cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!