Hazardous anatoxin-a (ANTX-a) is produced by freshwater algal blooms worldwide, which greatly increases the risk of consumer exposure. Although ANTX-a shows widespread neurotoxicity in aquatic animals, little is known about its mechanism of action and biotransformation in biological systems, especially in immunobiological models. In this study, transmission electron microscopy results showed that ANTX-a can destroy lymphocytes of by inducing cytoplasmic concentration, vacuolation, and swollen mitochondria. DNA fragmentations clearly showed a ladder pattern in agarose gel electrophoresis, which demonstrated that the apoptosis of fish lymphocytes was caused by exposure to ANTX-a. Flow cytometry results showed that the apoptotic percentage of fish lymphocytes exposed to 0.01, 0.1, 1, and 10 mg/L of ANTX-a for 12 h reached 18.89, 22.89, 39.23, and 35.58%, respectively. ANTX-a exposure induced a significant increase in reactive oxygen species (ROS) and malonaldehyde (MDA) in lymphocytes. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and the glutathione (GSH) content of the 0.01 mg/L ANTX-a-treated group decreased significantly by about 41, 46, 67, and 54% compared with that of the control group ( < 0.01), respectively. Although these observations were dose-dependent, these results suggested that ANTX-a can induce lymphocyte apoptosis via intracellular oxidative stress and destroy the antioxidant system after a short exposure time of only 12 h. Besides neurotoxicity, ANTX-a may also be toxic to the immune system of fish, even when the fish are exposed to environmentally relevant concentrations, which clearly demonstrated that the potential health risks induced by ANTX-a in aquatic organisms requires attention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174720 | PMC |
http://dx.doi.org/10.3389/fphys.2020.00316 | DOI Listing |
Toxins (Basel)
December 2024
Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain.
Anatoxin-a (ATX-a) is a cyanotoxin whose toxicological profile has been underinvestigated in comparison to other cyanotoxins such as microcystins (MCs) or cylindrospermopsin (CYN). However, its wide distribution, occurrence, and toxic episodes justify more attention. It is classified as a neurotoxin, but it has also been reported to affect other organs and systems.
View Article and Find Full Text PDFToxicol Rep
December 2024
Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India.
Cyanotoxins are primarily produced by different species of cyanobacteria, also known as blue-green algae, and have appeared to be environmental poisons that have various toxic effects on animal health, including humans. Cyanotoxins have been linked to the development and promotion of multiple cancers in recent studies. Important cyanotoxins, such as microcystins, nodularins, and cylindrospermopsin, have been found to play significant roles in developing and promoting various cancers.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Agricultural Research Service, United States Department of Agriculture, Toledo, OH 43606, USA.
Cyanobacterial harmful algal blooms (cHABs) are increasing due to eutrophication and climate change, as is irrigation of crops with freshwater contaminated with cHAB toxins. A few studies, mostly in aquatic protists and plants, have investigated the effects of cHAB toxins or cell extracts on various aspects of photosynthesis, with variable effects reported (negative to neutral to positive). We examined the effects of cyanobacterial live cultures and cell extracts ( or ) and individual cHAB toxins (anatoxin-a, ANA; beta-methyl-amino-L-alanine, BMAA; lipopolysaccharide, LPS; microcystin-LR, MC-LR) on photosynthesis in intact plants and leaf pieces in corn () and lettuce ().
View Article and Find Full Text PDFMicroorganisms
October 2024
Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
This study explores the in vitro effects of cyanotoxins from the methanolic extract of the cyanobacteria and on human blood cells, with samples drawn from the Gruža reservoir in Serbia. These cyanobacteria, which made up 98.5% of the reservoir's phytoplankton, reached densities of 4,656,450 cells mL, with (3,105,120 cells mL) as the dominant species, followed by (1,480,130 cells mL).
View Article and Find Full Text PDFToxins (Basel)
November 2024
Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11355, Saudi Arabia.
In this report, we describe a fluorescent assay for the detection of six marine toxins in water. The mechanism of detection is based on a duplex-to-complex structure-switching approach. The six aptamers specific to the targeted cyanotoxins were conjugated to a fluorescent dye, carboxyfluorescein (FAM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!