Riparian vegetation is a central component of the hydrosystem. As such, it is often subject to management practices that aim to influence its ecological, hydraulic or hydrological functions. Remote sensing has the potential to improve knowledge and management of riparian vegetation by providing cost-effective and spatially continuous data over wide extents. The objectives of this review were twofold: to provide an overview of the use of remote sensing in riparian vegetation studies and to discuss the transferability of remote sensing tools from scientists to managers. We systematically reviewed the scientific literature (428 articles) to identify the objectives and remote sensing data used to characterize riparian vegetation. Overall, results highlight a strong relationship between the tools used, the features of riparian vegetation extracted and the mapping extent. Very high-resolution data are rarely used for rivers longer than 100 km, especially when mapping species composition. Multi-temporality is central in remote sensing riparian studies, but authors use only aerial photographs and relatively coarse resolution satellite images for diachronic analyses. Some remote sensing approaches have reached an operational level and are now used for management purposes. Overall, new opportunities will arise with the increased availability of very high-resolution data in understudied or data-scarce regions, for large extents and as time series. To transfer remote sensing approaches to riparian managers, we suggest mutualizing achievements by producting open-access and robust tools. These tools will then have to be adapted to each specific project, in collaboration with managers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.110652 | DOI Listing |
ACS Nano
January 2025
Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.
Real-time monitoring of hemodynamics is crucial for diagnosing disorders within implanted vascular grafts and facilitating timely treatment. Integrating vascular grafts with advanced flexible electronics offers a promising approach to developing smart vascular grafts (SVGs) capable of continuous hemodynamic monitoring. However, most existing SVG devices encounter significant challenges in practical applications, particularly regarding biomechanical compatibility and the effective evaluation of vascular status.
View Article and Find Full Text PDFSci Total Environ
January 2025
US Department of Agriculture, Agriculture Research Service, Hydrology and Remote Sensing Laboratory, Beltsville, MD, United States of America.
Metolachlor is the most heavily used member of acetanilide herbicides, which are noted for forming highly soluble metabolites in root zone soils soon after field application. The two primary metabolites of metolachlor, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOXA), retain the same chiral chemistry as their source and are important tracers of nitrate loading from agricultural cropland. New analytical methods for separating the isomers of MESA and MOXA, enable studies assessing changes in the abundance of atropisomer pairs of the carbon chiral enantiomers in environmental samples.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Ionian Department, University of Bari Aldo Moro, Bari, Italy.
Fugitive or diffuse methane emissions constitute an important source of damage to the environment, much greater even than CO2 both over a time span of 20 years and over a longer time span of 100. It is therefore of preeminent importance to undertake all the efforts necessary to implement new tools, protocols, and methods that contribute to the identification and measurement of these emissions to implement site-specific actions of mitigation, repair, and conscious management of the emitting plants. Among the remote sensing and leak detection technologies currently used, the tunable diode laser absorption spectroscopy (TDLAS) method plays a relevant role.
View Article and Find Full Text PDFNano Lett
January 2025
National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China.
Efficient sacrificial-agent-free photosynthesis of HO from air and water represents the greenest, lowest-cost, most real-time avenue for HO production but remains a challenging issue. Here, we show a general and effective approach through a structural design on covalent organic frameworks (COFs) with asymmetric dual-function hybrid linkages for boosting the HO photosynthesis of the COFs. Through such design we can equip a COF with not only a catalytic active center but also a special function for isolating the D-A motif, which consequently endows the COF (CI-COF) built on asymmetric dual-function hybrid linkages with a significantly enhanced efficiency in the generation, transmission, and separation of photogenerated carriers, relative to the COF (II-COF and CC-COF) built on symmetric single-function single linkages.
View Article and Find Full Text PDFConserv Biol
January 2025
Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW, Australia.
Multispecies coral reef fisheries are typically managed by local communities who often lack research and monitoring capacity, which prevents estimation of well-defined sustainable reference points to perform locally relevant fishery assessments. Recent research modeling coral reef fisheries globally has estimated multispecies sustainable reference points (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!