Cell-free DNA (cfDNA) and circulating tumor cells (CTCs) exhibit great potential for therapy management in oncology. We aimed to establish a multimodal liquid biopsy strategy that is usable with minimized blood volume to deconvolute the genomic complexity of metastatic breast cancer. CTCs were isolated from 10ml blood of 18 hormone receptor-positive and human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer patients. cfDNA was isolated from plasma generated after CTC depletion and targeted sequencing analyses were conducted. and variants were less common in CTC gDNA, while variants were only detected in CTC gDNA. A total of 62% of all cfDNA variants were recovered in the matched CTC gDNA, while 72% of all variants were unique in either cfDNA (14 variants) or CTC gDNA (104 variants). The percentage of patients with no detectable cfDNA variants or CTC gDNA variants was 17%/11%, but a combined analysis identified variants in 94% of all patients. In univariate and multivariate regression models, variants in cfDNA and CTC gDNA correlated significantly with survival. We suggest a coordinated analysis of both fractions in order to provide a comprehensive genomic footprint that may contribute to identifying the most suitable therapy for each individual.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281124PMC
http://dx.doi.org/10.3390/cancers12051084DOI Listing

Publication Analysis

Top Keywords

ctc gdna
24
metastatic breast
12
breast cancer
12
cfdna variants
12
variants
10
circulating tumor
8
tumor cells
8
cell-free dna
8
cancer patients
8
gdna variants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!