We theoretically demonstrate a switchable multichannel near-infrared absorber in a composite structure based on vanadium dioxide nanoparticles embedded between two and one-dimensional photonic crystal mirrors. A switching of absorption behavior is induced through the reversible semiconductor-to-metal phase transition of vanadium dioxide nanoparticles via its temperature-dependent permittivity-thermo-optical effect. This behavior leads to a multi-wavelength reconfigurable optical response of the proposed structure from poorly absorbing to highly absorbing. For example, there is the possibility of enhancement of absorption from ∼0.14 to ∼0.75 at normal incidence of light by increasing the temperature beyond the critical value of ∼341 K when the vanadium dioxide nanoparticles transform from a semiconducting state into a metallic one. These properties make the considered structure applicable for use in multiband absorbers, light detectors, and optical switching devices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab8e76DOI Listing

Publication Analysis

Top Keywords

vanadium dioxide
12
dioxide nanoparticles
12
phase transition
8
tunable multispectral
4
multispectral near-infrared
4
near-infrared absorption
4
absorption phase
4
nanoparticles
4
transition nanoparticles
4
nanoparticles hybridized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!