The bacterial phoD gene encodes alkaline phosphatase plays an important role in the release of bioavailable inorganic phosphorus (P) from organic P in environmental systems. However, phoD gene diversity in suspended particles in shallow freshwater lakes is poorly understood. In this study, we explored the potential relationship between environmental factors and phoD phosphatase gene in suspended particles in different ecosystem types (lake zones) in Lake Taihu, a large shallow eutrophic lake in China. Quantitative PCR and high-throughput sequencing were used to analyze phoD gene abundance and the phoD-harboring bacterial community composition. Our results indicate that the distribution of phoD gene abundance in suspended particles had a high spatiotemporal heterogeneity. The phoD gene abundance in each lake zone decreased significantly from June to September. The dominant phoD-harboring phylum in all samples was Actinobacteria, followed by Proteobacteria, Cyanobacteria and Gemmatimonadetes. The first predominant phoD-harboring genera varied among samples, but most of them belonged to phylum Actinobacteria. Driven by different environmental factors, the phoD-harboring bacterial community structure varied with sampling month and ecosystem type. Nitrate and ammonia nitrogen were the main environmental drivers of phoD-harboring bacterial community in suspended particles in the river mouth zone, while water pH and dissolved oxygen were important factors for the algae-dominated, macrophyte-dominated and central lake zones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138615DOI Listing

Publication Analysis

Top Keywords

suspended particles
20
phod gene
20
gene abundance
12
phod-harboring bacterial
12
bacterial community
12
alkaline phosphatase
8
phosphatase gene
8
gene diversity
8
large shallow
8
shallow eutrophic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!