Next generation sequencing exome data analysis aids in the discovery of SNP and INDEL patterns in Parkinson's disease.

Genomics

Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India. Electronic address:

Published: September 2020

Whole exome sequencing is an adept method to reveal novel and disease-related SNPs and INDELs as it screen the actionable areas of the genome. We evaluated the exome sequenced datasets of patients with Parkinson's disease (PD) in South African ethnic origin. The primary focus of this study was to discover the SNPs and INDELs patterns responsible for PD. The variant discovery was performed with genome analysis tool kit best practices variant detection pipelines. The SNPs were linked to the genes and categorized based on the filter-based annotation from ANNOVAR. We identified a total of 7955 SNPs and 9952 INDELs in all seven datasets together. A total of 130 missense nsSNPs were prioritized based on its damaging effect predicted from SIFT and Polyphen2 annotation. We noticed a novel nsSNP rs111655870 in gene LRRK2 that shows the mutation of a Leucine to Phenylalanine at position 208 which can alter the protein function. The study also filtered seven nsSNPs in genes NAGA, SULT4A1, MYH8, FLNA, TPM3, ATP13A1, CLN8 that have potentially deleterious effects predicted by various computational tools. This analysis suggested that the above filtered nsSNPs and INDELs have a functional impact and provide the footing for genetic studies related to PD. Further screening of these variations provides deeper insight for molecular mechanism of disease progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2020.04.025DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
snps indels
8
filtered nssnps
8
generation sequencing
4
sequencing exome
4
exome data
4
data analysis
4
analysis aids
4
aids discovery
4
discovery snp
4

Similar Publications

The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.

View Article and Find Full Text PDF

Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.

View Article and Find Full Text PDF

Isolated rapid eye movement sleep behavior disorder is a prodrome of α-synucleinopathies. Using positron emission tomography, we assessed changes in Parkinson's disease-related motor and cognitive metabolic networks and caudate/putamen dopaminergic input in a 4-year longitudinal imaging study of 13 male subjects with this disorder. We also correlated times to phenoconversion with baseline network expression in an independent validation sample.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition.

Methods: We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5).

Results: There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!