Introduction And Objectives: Dyspnea is the most common symptom among hospitalized patients with heart failure (HF) but besides dyspnea questionnaires (which reflect the subjective patient sensation and are not fully validated in HF) there are no measurable physiological variables providing objective assessment of dyspnea in a setting of acute HF patients. Studies performed in respiratory patients suggest that the measurement of electromyographic (EMG) activity of the respiratory muscles with surface electrodes correlates well with dyspnea. Our aim was to test the hypothesis that respiratory muscles EMG activity is a potential marker of dyspnea severity in acute HF patients.

Methods: Prospective and descriptive pilot study carried out in 25 adult patients admitted for acute HF. Measurements were carried out with a cardio-respiratory portable polygraph including EMG surface electrodes for measuring the activity of main (diaphragm) and accessory (scalene and pectoralis minor) respiratory muscles. Dyspnea sensation was assessed by means of the Likert 5 questionnaire. Data were recorded during 3 min of spontaneous breathing and after breathing at maximum effort for several cycles for normalizing data. An index to quantify the activity of each respiratory muscle was computed. This assessment was carried out within the first 24 h of admission, and at day 2 and 5.

Results: Dyspnea score decreased along the three measured days. Diaphragm and scalene EMG index showed a positive and significant direct relationship with dyspnea score (p<0.001 and p = 0.003 respectively) whereas pectoralis minor muscle did not.

Conclusion: In our pilot study, diaphragm and scalene EMG activity was associated with increasing severity of dyspnea. Surface respiratory EMG could be a useful objective tool to improve assessment of dyspnea in acute HF patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190138PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232225PLOS

Publication Analysis

Top Keywords

respiratory muscles
12
dyspnea
9
heart failure
8
emg activity
8
activity respiratory
8
surface electrodes
8
dyspnea score
8
patients
5
respiratory
5
surface respiratory
4

Similar Publications

Diaphragmatic stripping versus full-thickness diaphragmatic resection in cytoreductive surgery: a meta-analysis of the current evidence.

Langenbecks Arch Surg

January 2025

Department of Surgery (A), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, Moorenstr. 5, 40225, Duesseldorf, Germany.

Purpose: The primary objective was to compare the intra- and postoperative outcomes of diaphragmatic stripping versus full-thickness diaphragmatic resection in patients with peritoneal carcinomatosis who underwent cytoreductive surgery.

Methods: According to the PRSIMA guidelines, a comprehensive literature search was conducted for studies comparing postoperative pulmonary complications as well as intra- and postoperative outcomes of diaphragmatic stripping versus full-thickness diaphragmatic resection in patients with peritoneal carcinomatosis necessitating cytoreductive surgery. Data from eligible studies were extracted, qualitatively assessed, and included in a meta-analysis.

View Article and Find Full Text PDF

Type 2 Diabetes Induces Mitochondrial Dysfunction in Zebrafish Skeletal Muscle Leading to Diabetic Myopathy via the miR-139-5p/NAMPT Pathway.

Int J Mol Sci

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China.

Type 2 diabetes mellitus (T2DM) is a common metabolic disease that is frequently accompanied by multiple complications, including diabetic myopathy, a muscle disorder that is mainly manifested as decreased muscle function and reduced muscle mass. Diabetic myopathy is a relatively common complication among patients with diabetes that is mainly attributed to mitochondrial dysfunction. Therefore, we investigated the mechanisms underlying diabetic myopathy development, focusing on the role of microRNAs (miRs).

View Article and Find Full Text PDF

We present a case report of a 42-year-old female with post-West Nile virus meningoencephalitis who exhibited unique, long-latency diaphragm potentials evoked by transcranial and cervical magnetic stimulation after exposure to acute intermittent hypoxia (AIH). The subject was recruited for a study investigating AIH effects on respiratory motor function in healthy individuals. She had contracted West Nile virus infection 5 years before assessment that resulted in hospitalization and persistent allodynia but was not reported to the research team.

View Article and Find Full Text PDF

Mitochondrial disease and epilepsy in children.

Front Neurol

January 2025

Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China.

Mitochondria is the cell's powerhouse. Mitochondrial disease refers to a group of clinically heterogeneous disorders caused by dysfunction in the mitochondrial respiratory chain, often due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) that encodes mitochondrial proteins. This dysfunction can lead to a variety of clinical phenotypes, particularly affecting organs with high energy demands, such as the brain and muscles.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19), resulting from the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), affects various bodily systems, including the heart, central nervous system, muscles, and bones, all of which harbor angiotensin-converting enzyme 2 (ACE-2) receptors similar to those in the respiratory system. However, research on the inflammatory response and its impact on systems such as the musculoskeletal one is relatively scarce. Our study aimed to investigate bone and muscle metrics as well as handgrip strength in individuals who recuperated from COVID-19 infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!