Three new pyrazolated chalcogenoether ligated Rh(iii) half-sandwich complexes (1-3) were synthesised by the thermal reaction of chalcogenoether (S, Se and Te) substituted 1H-pyrazole ligands (L1-L3) and [(η5-C5Me5)RhCl]2 in methanol. The complexes were fully characterised by various spectroscopic techniques, and the molecular structures of complexes 1 and2 were also established through single crystal X-ray crystallographic analysis, which indicates a pseudo-octahedral half-sandwich piano-stool geometry around the rhodium metal. All three complexes were found to be thermally stable and insensitive towards air and moisture. One mol% of Rh(iii) complexes (1-3) along with 10 mol% of Cu(OAc)2 were explored for the Buchwald-Hartwig type C-N coupling reactions of amine and aryl chloride. Good to excellent yields (89-92%) of the coupling products were obtained with seleno- and thio-ether functionalised pyrazolated Rh(iii) complexes (1 and 2), while an average yield (39%) was obtained with the telluro-ether functionalised complex (3). In contrast to the previously reported C-N coupling reactions the present reaction works under solvent- and base-free conditions, and the coupling reaction is accomplished in just 6 h with a high yield of the coupling product. The present methodology was also found to be efficient for a wide variety of functionalised aryl halides, and aliphatic or aromatic amines (1° and 2°). Moreover, the reaction also enables the C-N coupling of electron-withdrawing substrates and base-sensitive functionalities.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ob00538jDOI Listing

Publication Analysis

Top Keywords

c-n coupling
16
complexes 1-3
8
rhiii complexes
8
coupling reactions
8
complexes
7
coupling
7
half-sandwich η-cp*rhiii
4
η-cp*rhiii complexes
4
complexes pyrazolated
4
pyrazolated organo-sulfur/selenium/tellurium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!