Electrochemical detection of dopamine (DA) usually depends on electrochemical oxidation of DA. This conventional method can hardly provide sufficient sensitivity and selectivity in the determination of the cerebral DA down to nanomolar level, because the ability of DA to be electrochemically oxidized is limited and many electroactive interferents are also oxidized at a similar potential with DA. Here, an electrochemical assay based on a double molecular recognition strategy has been proposed and proved to be of high sensitivity and selectivity for DA measurement in the cerebral system. 3,3'-Dithiodipropionic acid di(N-hydroxysuccinimide ester) (DSP) was anchored on the electrode surface to capture DA target through the specific reaction between N-hydroxysuccinimide (NHS) ester and amine. The captured DA endowed the electrode with a layer of diol groups, which further reacted with the boronic acid to trap of 4-mercaptophenylboronic acid (MBA) molecules, thus leading to the conjunction of electroactive thionine (Th) molecules on the electrode for signal readout. In addition, an Au nanostructure was employed to enhance signal amplification and facilitate the double molecular recognition process. As a consequence, this method was able to quantify DA from 1 to 300 nM with a detection limit of 0.74 nM, which exhibited a high specificity against cerebral interferents. Furthermore, the practicability of this platform was successfully demonstrated through determination of the dynamics of cerebral DA in the events of high K and nomifensine retromicrodialysis. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-020-02624-6 | DOI Listing |
Plant Commun
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:
UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands.
Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.
The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
: Extracellular vesicles (EVs) can carry pathological cargo, contributing to disease progression. The enzyme neutral sphingomyelinase 2 (nSMase2) plays a critical role in EV biogenesis, making it a promising therapeutic target. Our lab previously identified a potent and selective inhibitor of nSMase2, named DPTIP (IC = 30 nM).
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.
Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!