Synthesis of Metastable Inorganic Solids with Extended Structures.

Chemphyschem

Department of Chemistry, University of Oregon, 1253 University of Oregon Eugene, Oregon, 97403, USA.

Published: July 2020

The number of known inorganic compounds is dramatically less than predicted due to synthetic challenges, which often constrains products to only the thermodynamically most stable compounds. Consequently, a mechanism-based approach to inorganic solids with designed structures is the holy grail of solid state synthesis. This article discusses a number of synthetic approaches using the concept of an energy landscape, which describes the complex relationship between the energy of different atomic configurations as a function of a variety of parameters such as initial structure, temperature, pressure, and composition. Nucleation limited synthesis approaches with high diffusion rates are contrasted with diffusion limited synthesis approaches. One challenge to the synthesis of new compounds is the inability to accurately predict what structures might be local free energy minima in the free energy landscape. Approaches to this challenge include predicting potentially stable compounds thorough the use of structural homologies and/or theoretical calculations. A second challenge to the synthesis of metastable inorganic solids is developing approaches to move across the energy landscape to a desired local free energy minimum while avoiding deeper free energy minima, such as stable binary compounds, as reaction intermediates. An approach using amorphous intermediates is presented, where local composition can be used to prepare metastable compounds. Designed nanoarchitecture built into a precursor can be preserved at low reaction temperatures and used to direct the reaction to specific structural homologs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202000199DOI Listing

Publication Analysis

Top Keywords

free energy
16
inorganic solids
12
energy landscape
12
synthesis metastable
8
metastable inorganic
8
stable compounds
8
limited synthesis
8
synthesis approaches
8
approaches challenge
8
challenge synthesis
8

Similar Publications

Purpose: Management of the elderly patients presenting with open lower limb fractures is challenging due to physiological changes and pre-existing co-morbidities. The aim of this study was to assess the compliance with the British Orthopaedic Association's Standards for Trauma Number 4 (BOAST 4) guidelines in this patient group.

Methods: The study included a retrospective analysis of all the patients aged > 65 years old admitted with open lower limb fracture between 2017 and 2019 to a major trauma centre (MTC) in East of England.

View Article and Find Full Text PDF

Inverse dose protraction effects of low-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.

View Article and Find Full Text PDF

Integrating machine learning potentials (MLPs) with quantum mechanical/molecular mechanical (QM/MM) free energy simulations has emerged as a powerful approach for studying enzymatic catalysis. However, its practical application has been hindered by the time-consuming process of generating the necessary training, validation, and test data for MLP models through QM/MM simulations. Furthermore, the entire process needs to be repeated for each specific enzyme system and reaction.

View Article and Find Full Text PDF

Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures.

Nat Nanotechnol

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.

Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!