A computational investigation on the structure and antioxidant property of a natural food colorant Petunidin (PT) was performed under DFT/B3LYP/6-31+ G (d, p). PT has a drug score of +0.804 which indicates its drug-like nature. The antioxidant property of PT was well explained by HAT mechanism and it has been found that the electron releasing substituents decreases the BDE value. PT has lowest BDE value at C3 position and is confirmed by the lowest pKa value, high atomic charge and lowest bond order. PT easily donates the hydrogen atom and exists in the deprotonated form in blood as the pKa value at C3 is less than the pH value of blood. PT shows no violation to Lipinski's rule of 5 indicating its nature as an orally admissible drug. More over PT has considerable bioactivity against nuclear receptor ligand while it shows only moderate activity towards GPCR and ion channel modulator. Also it shows moderate activity as an enzyme inhibitor and protease inhibitor but shows considerable activity as a kinase inhibitor. PT is non toxic in nature and all these factors favor its use as a potential antioxidant and a drug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181340 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e02115 | DOI Listing |
Food Chem
December 2024
Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China; School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China. Electronic address:
In this study, ultrasound-assisted glycated ovalbumin (G-UOVA) based on natural deep eutectic solvents (NADES) was prepared using response surface optimization. The binding affinity of (-)-gallocatechin gallate (GCG) to native OVA (NOVA), ultrasound treated OVA (UOVA), glycated OVA (GOVA), and G-UOVA followed G-UOVA > GOVA > UOVA > NOVA. The effects of various modifications and GCG binding on the secondary structure, particle size, and thermal stability of NOVA were investigated.
View Article and Find Full Text PDFJ Mol Model
December 2024
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, Número 186, Colonia Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Código Postal 09310, Ciudad de Mexico, Mexico.
Context: Antioxidants are known to play a beneficial role in human health. Caffeic acid has been previously recognized as efficient in this context. However, such a capability can be enhanced through structural modification.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye.
Nanoparticles (NPs) have emerged as a potent choice for various applications, from drug delivery to agricultural studies, serving as an alternative and promising methodology for future advancements. They have been widely explored in delivery systems, demonstrating immense promise and high efficiency for the delivery of numerous biomolecules such as proteins and anticancer agents, either solely or modified with other compounds to enhance their capabilities. In addition, the utilization of NPs extends to antimicrobial studies, where they are used to develop novel antibacterial, antifungal, and antiviral formulations with advanced characteristics.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.
View Article and Find Full Text PDFMetabolites
November 2024
Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-Construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China.
Ammonia, a ubiquitous contaminant in aquatic ecosystems, poses multifaceted threats to fish species at elevated concentrations. In order to investigate the toxic effects of chronic ammonia stress on the liver of juvenile , the present experiment was conducted to investigate the differences in changes in liver tissue structure, enzyme activities, and metabolomes after 28 days of ammonia exposure (0, 4, 8, and 16 mg/L). The findings revealed that ammonia exposure induced significant oxidative stress in the liver, manifesting in decreased activities of antioxidant enzymes SOD and GSH-Px, elevated levels of GSH, GST, and MDA, and heightened activities of immune enzymes LZM, ALP, and ACP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!