Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chimeric antigen receptor (CAR) T cell therapy has had limited efficacy for solid tumors, largely due to a lack of selectively and highly expressed surface antigens. To avoid reliance on a tumor's endogenous antigens, here we describe a method of tumor-selective delivery of surface antigens using an oncolytic virus to enable a generalizable CAR T cell therapy. Using CD19 as our proof of concept, we engineered a thymidine kinase-disrupted vaccinia virus to selectively deliver CD19 to malignant cells, and thus demonstrated potentiation of CD19 CAR T cell activity against two tumor types . In an immunocompetent model of B16 melanoma, this combination markedly delayed tumor growth and improved median survival compared with antigen-mismatched combinations. We also found that CD19 delivery could improve CAR T cell activity against tumor cells that express low levels of cognate antigen, suggesting a potential application in counteracting antigen-low escape. This approach highlights the potential of engineering tumors for effective adoptive cell therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183102 | PMC |
http://dx.doi.org/10.1016/j.omto.2020.03.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!