Unique presentation of in a superficial left temporal abscess.

IDCases

Department of Otolaryngology, Texas Tech University Health Science Center School of Medicine, 3601 4th Street, STOP 8315, Lubbock, TX, 79430, United States.

Published: April 2020

previously , is an uncommon organism that historically has been associated with HACEK infective endocarditis and brain abscesses. This organism is most often isolated as part of normal oral flora, and patients with infection usually have an underlying periodontal infection or immunocompromised state allowing for infection. This case report outlines a unique presentation of left superficial temporal abscess due to infection in an immunocompetent individual.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178486PMC
http://dx.doi.org/10.1016/j.idcr.2020.e00753DOI Listing

Publication Analysis

Top Keywords

unique presentation
8
temporal abscess
8
presentation superficial
4
superficial left
4
left temporal
4
abscess uncommon
4
uncommon organism
4
organism historically
4
historically associated
4
associated hacek
4

Similar Publications

The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.

View Article and Find Full Text PDF

Background: In data-sparse areas such as health care, computer scientists aim to leverage as much available information as possible to increase the accuracy of their machine learning models' outputs. As a standard, categorical data, such as patients' gender, socioeconomic status, or skin color, are used to train models in fusion with other data types, such as medical images and text-based medical information. However, the effects of including categorical data features for model training in such data-scarce areas are underexamined, particularly regarding models intended to serve individuals equitably in a diverse population.

View Article and Find Full Text PDF

The inversion effect in biological motion suggests that presenting a point-light display (PLD) in an inverted orientation impairs the observer's ability to perceive the movement, likely due to the observer's unfamiliarity with the dynamic characteristics of inverted motion. Vertical dancers (VDs), accustomed to performing and perceiving others to perform dance movements in an inverted orientation while being suspended in the air, offer a unique perspective on this phenomenon. A previous study showed that VDs were more sensitive to the artificial inversion of PLDs depicting dance movements when compared to typical and non-dancers if given sufficient dynamic information.

View Article and Find Full Text PDF

Objectives: This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols.

Methods: We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways.

View Article and Find Full Text PDF

High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions.

Adv Sci (Weinh)

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!