Regenerative capability of the peripheral nervous system after injury is enhanced by Schwann cells (SCs) producing several growth factors. The clinical use of SCs in nerve regeneration strategies is hindered by the necessity of removing a healthy nerve to obtain the therapeutic cells. Adipose-derived stem cells (ASCs) can be chemically differentiated towards a SC-like phenotype (dASCs), and represent a promising alternative to SCs. Their physiology can be further modulated pharmacologically by targeting receptors for neurotransmitters such as acetylcholine (ACh). In this study, we compare the ability of rat dASCs and native SCs to produce NGF in vitro. We also evaluate the ability of muscarinic receptors, in particular the M2 subtype, to modulate NGF production and maturation from the precursor (proNGF) to the mature (mNGF) form. For the first time, we demonstrate that dASCs produce higher basal levels of proNGF and mature NGF compared to SCs. Moreover, muscarinic receptor activation, and in particular M2 subtype stimulation, modulates NGF production and maturation in both SCs and dASCs. Indeed, both cell types express both proNGF A and B isoforms, as well as mNGF. After M2 receptor stimulation, proNGF-B (25 kDa), which is involved in apoptotic processes, is strongly reduced at transcript and protein level. Thus, we demonstrate that dASCs possess a stronger neurotrophic potential compared to SCs. ACh, via M2 muscarinic receptors, contributes to the modulation and maturation of NGF, improving the regenerative properties of dASCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188814PMC
http://dx.doi.org/10.1038/s41598-020-63645-wDOI Listing

Publication Analysis

Top Keywords

muscarinic receptors
12
adipose-derived stem
8
stem cells
8
schwann cells
8
ngf production
8
production maturation
8
prongf mature
8
demonstrate dascs
8
compared scs
8
scs
7

Similar Publications

Charge Movements and Conformational Changes: Biophysical Properties and Physiology of Voltage-Dependent GPCRs.

Biomolecules

December 2024

Institute of Pharmacology and Clinical Pharmacy, Biochemical Pharmaceutical Center (BPC) Marburg, University of Marburg, 35043 Marburg, Germany.

G protein-coupled receptors (GPCRs) regulate multiple cellular functions and represent important drug targets. More than 20 years ago, it was noted that GPCR activation (agonist binding) and signaling (G protein activation) are dependent on the membrane potential (V). While it is now proven that many GPCRs display an intrinsic voltage dependence, the molecular mechanisms of how GPCRs sense depolarization of the plasma membrane are less well defined.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: In Moroccan traditional medicine, plants from the Apiaceae family are widely utilized in folk medicine to treat various diseases associated with the digestive system. plays an important role as an antispasmodic that has been traditionally used, especially to treat digestive tract diseases in children.

Aim Of The Study: The aim of this research was to verify the traditional use by assessing the relaxant and spasmolytic activities of essential oil (ALEO) and then comparing them to the effects and potency of the major constituent of ALEO, which is perillaldehyde.

View Article and Find Full Text PDF

Cholinergic transmission fundamentally modulates information processing in the brain via muscarinic receptors. Using electrophysiological recordings of population spikes from the CA1 region, we found that the muscarinic receptor agonist carbachol (CCh, 1 μM) enhances the basal excitation level in the dorsal but not ventral hippocampus. Using a frequency stimulation protocol, we found that CCh transforms depression of neuronal output into facilitation (at 3-30 Hz) in the ventral hippocampus while only lessening depression in the dorsal hippocampus, suggesting that muscarinic transmission boosts basal neuronal activation in the dorsal hippocampus and strongly facilitates the output of the ventral hippocampus in a frequency-dependent manner.

View Article and Find Full Text PDF

Cinnamic acid lowers blood pressure and reverses vascular endothelial dysfunction in rats.

J Food Drug Anal

December 2024

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad-22060, KP, Pakistan.

Cinnamic acid (CA) possesses important cardiovascular effects such as cardioprotective, antiatherogenic, antihyperlipidemic and antioxidant, which predicts its potential role in the treatment of hypertension. The study was executed to investigate the antihypertensive potential of CA in Sprague Dawley (SD) rats followed by evaluation in diverse vascular preparations. Invasive blood pressure monitoring technique was used in normotensive and hypertensive rats, under anesthesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!