Pore structure and its impact on susceptibility to coal spontaneous combustion based on multiscale and multifractal analysis.

Sci Rep

Key Laboratory of Coalbed Methane Resource & Reservoir Formation Process, Ministry of Education, China University of Mining & Technology, Xuzhou, 221116, China.

Published: April 2020

AI Article Synopsis

Article Abstract

The relationship between the properties of coal and its tendency to spontaneous combustion is critical for the environment, safety concerns, and economy. In this study, to eliminate the complex influence of moisture; the samples having similar moisture content were selected from Shanxi and Henan provinces. The chemical properties, physical properties, and tendency of coal samples to spontaneous combustion were characterized based on the conventional analysis, mercury intrusion porosimetry, fractal dimensions, and crossing point temperature (CPT). The results confirmed that the coal rank, volatile matter, oxygen contents, and fixed carbon content had a good linear relationship with the CPT. The relationship between the ash content and CPT presented a "U-shaped" non-linear correlation. For the pore size distribution, the total pore volume also possessed a linear positive correlation with the CPT. The fractal curves could be distinctly divided into two stages: low-pressure (<20 MPa) and high-pressure (>20 MPa), from which the fractal dimensions were obtained using the Sponge and Sierpinski models. The relationship between the fractal dimensions (D, D, and D) and CPT could be divided into two distinct stages: a decrease in the CPT with increasing fractal dimensions (2.6-2.85), and then an in increase in the CPT. CPT decreased with increasing parameters of D, D, H, and D, and it gradually increased with increasing D-D, D-D, and D-D. The above characteristics are important to comprehensively and systematically reveal the mechanism of spontaneous combustion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189386PMC
http://dx.doi.org/10.1038/s41598-020-63715-zDOI Listing

Publication Analysis

Top Keywords

spontaneous combustion
16
fractal dimensions
16
cpt
8
d-d d-d
8
fractal
5
pore structure
4
structure impact
4
impact susceptibility
4
coal
4
susceptibility coal
4

Similar Publications

Triboelectric nanogenerators (TENGs) have gained significant attention for ability to convert mechanical energy into electrical energy. As the applications of TENG devices expand, their safety and reliability becomes priority, particularly where there is risk of fire or spontaneous combustion. Flame-retardant materials can be employed to address these safety concerns without compromising the performance and efficiency of TENGs.

View Article and Find Full Text PDF

The construction of a predictive model that accurately reflects the spontaneous combustion temperature of coal in goaf is fundamental to monitoring and early warning systems for thermodynamic disasters, including coal spontaneous combustion and gas explosions. In this paper, on the basis of programming temperature experiment and industrial analysis, 381 data sets of 9 coal types are established, and feature selection was executed through the utilization of the Pearson correlation coefficient, ultimately identifying O, CO, CO, CH, CH, CH/CH, CH/CH, CH/CH, CO/CO, and CO/O as input indicators for the prediction model. The chosen indicator data were divided into training and testing sets in a 4:1 ratio, the Particle Swarm Optimization (PSO) methodology was applied to optimize the parameters of the XGBoost regressor, and a universal PSO-XGBoost prediction model is proposed.

View Article and Find Full Text PDF

Study on the law of air leakage in goaf under the influence of double-series coal seam mining.

Heliyon

January 2025

CCRI Tongan (Beijing) Intelligent Control Technology Co., Ltd, Beijing, 100013, China.

In order to solve the engineering problem of a large amount of wind leakage in the 8106 comprehensive mining working face of the Carboniferous System under the influence of overlapping mining of two coal seams in Yongdingzhuang Mine, Datong Mining Area, this paper utilizes finite element numerical simulation software to study the wind leakage characteristics of the 8106 working face and the distribution range of the spontaneous combustion "three zones" of the mining area. The results show that, under the condition of external air leakage, the internal pressure of the goaf is greater than the external pressure, the upper pressure is greater than the lower pressure, and the seepage direction is from the top down and from the inside out. Under the condition of no external air leakage, the air leakage source is mainly concentrated in the air inlet lane.

View Article and Find Full Text PDF

In this work, the coprecipitation approach was successfully used to create Mg-Al hydrotalcite-like inhibitors modified with varying amounts of Zn, and their characteristics were assessed. The findings indicate that the flame retardancy of Mg-Al hydrotalcite (MgAl-LDHs) is not significantly affected by Zn content. By adding MgAl-LDHs, the temperature at which the exothermic reaction started to occur was raised from 146.

View Article and Find Full Text PDF

To investigate the impact of the oxidation temperature and variations in airflow conditions on coal spontaneous combustion characteristics, pre-oxidized coal samples were prepared using a programmed temperature rise method. Synchronous thermal analysis experiments and Fourier transform infrared spectroscopy were conducted to explore changes in the thermal effects and functional group content of the coal samples, respectively. The results indicate that variations in pre-oxidation conditions primarily in fluence the activation temperature and maximum weight loss temperature of the coal samples, while exerting a lesser impact on the critical temperature and ignition point.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!