Colon cancer has been well studied using a variety of molecular techniques, including whole genome sequencing. However, genetic markers that could be used to predict lymph node (LN) involvement, which is the most important prognostic factor for colon cancer, have not been identified. In the present study, we compared LN(+) and LN(-) colon cancer patients using differential gene expression and network analysis. Colon cancer gene expression data were obtained from the Cancer Genome Atlas and divided into two groups, LN(+) and LN(-). Gene expression networks were constructed using LASSO (Least Absolute Shrinkage and Selection Operator) regression. We identified hub genes, such as APBB1, AHSA2, ZNF767, and JAK2, that were highly differentially expressed. Survival analysis using selected hub genes, such as AHSA2, CDK10, and CWC22, showed that their expression levels were significantly associated with the survival rate of colon cancer patients, which indicates their possible use as prognostic markers. In addition, protein-protein interaction network, GO enrichment, and KEGG pathway analysis were performed with selected hub genes from each group to investigate the regulatory relationships between hub genes and LN involvement in colon cancer; these analyses revealed differences between the LN(-) and LN(+) groups. Our network analysis may help narrow down the search for novel candidate genes for the treatment of colon cancer, in addition to improving our understanding of the biological processes underlying LN involvement. All R implementation codes are available at journal website as Supplementary Materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189385 | PMC |
http://dx.doi.org/10.1038/s41598-020-63806-x | DOI Listing |
World J Clin Oncol
January 2025
Department of Oncology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
Background: Patients with mutant metastatic colorectal cancer (mCRC) have a low incidence rate, poor biological activity, suboptimal response to conventional treatments, and a poor prognosis. In the previous cohort study on mCRC conducted by our team, it was observed that integrated Chinese and Western medicine treatment could significantly prolong the overall survival (OS) of patients with colorectal cancer. Therefore, we further explored the survival benefits in the population with mutant mCRC.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
Ras gene is frequently mutated in cancer. Among different subtypes of Ras gene, K-Ras mutation occurs in nearly 30 % of human cancers. K-Ras mutation, specifically K-Ras (G12D) mutation is prevalent in cancers like lung, colon and pancreatic cancer.
View Article and Find Full Text PDFCureus
December 2024
Gastrointestinal Bleeding Center, Cleriston Andrade General Hospital, Feira de Santana, BRA.
Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary disease characterized by the progressive development of multiple adenomatous polyps along the colon. The majority of individuals develop colorectal cancer by the age of 40 within the evolutionary course of the disease. For this reason, screening family members is essential to enable identification, surveillance, and appropriate intervention.
View Article and Find Full Text PDFCureus
December 2024
Gastroenterology and Hepatology, Washington University in St. Louis, St. Louis, USA.
Introduction Colorectal cancer (CRC) represents a major global health burden, significantly impacting mortality rates and healthcare systems worldwide. CRC screening through colonoscopy enables early detection and removal of precancerous polyps. While standard polypectomy suffices for small polyps, larger ones require endoscopic mucosal resection (EMR).
View Article and Find Full Text PDFGastro Hep Adv
September 2024
School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Background And Aims: Colorectal cancer (CRC) is the second most deadly cancer globally. The rapidly rising incidence rate of CRC, coupled with increased diagnoses in individuals <50 years, indicates that early detection of CRC, and those at an increased risk of CRC development, is paramount to improve the survival rates of these patients. Here, we profile caspase-4 expression across 2 distinct CRC development pathways, sporadic CRC (sCRC) and inflammatory bowel disease-associated CRC (IBD-CRC), to examine its utility as a novel biomarker for CRC risk and diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!