AsHSP26.8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response.

BMC Plant Biol

Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA.

Published: April 2020

Background: Small heat shock proteins (sHSPs) are critical for plant response to biotic and abiotic stresses, especially heat stress. They have also been implicated in various aspects of plant development. However, the acting mechanisms of the sHSPs in plants, especially in perennial grass species, remain largely elusive.

Results: In this study, AsHSP26.8a, a novel chloroplast-localized sHSP gene from creeping bentgrass (Agrostis stolonifera L.) was cloned and its role in plant response to environmental stress was studied. AsHSP26.8a encodes a protein of 26.8 kDa. Its expression was strongly induced in both leaf and root tissues by heat stress. Transgenic Arabidopsis plants overexpressing AsHSP26.8a displayed reduced tolerance to heat stress. Furthermore, overexpression of AsHSP26.8a resulted in hypersensitivity to hormone ABA and salinity stress. Global gene expression analysis revealed AsHSP26.8a-modulated expression of heat-shock transcription factor gene, and the involvement of AsHSP26.8a in ABA-dependent and -independent as well as other stress signaling pathways.

Conclusions: Our results suggest that AsHSP26.8a may negatively regulate plant response to various abiotic stresses through modulating ABA and other stress signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189581PMC
http://dx.doi.org/10.1186/s12870-020-02369-5DOI Listing

Publication Analysis

Top Keywords

plant response
12
heat stress
12
creeping bentgrass
8
small heat
8
heat shock
8
signaling pathways
8
stress
8
abiotic stresses
8
stress signaling
8
ashsp268a
7

Similar Publications

Importance of pre-mRNA splicing and its study tools in plants.

Adv Biotechnol (Singap)

February 2024

National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.

Alternative splicing (AS) significantly enriches the diversity of transcriptomes and proteomes, playing a pivotal role in the physiology and development of eukaryotic organisms. With the continuous advancement of high-throughput sequencing technologies, an increasing number of novel transcript isoforms, along with factors related to splicing and their associated functions, are being unveiled. In this review, we succinctly summarize and compare the different splicing mechanisms across prokaryotes and eukaryotes.

View Article and Find Full Text PDF

From trade-off to synergy: how nutrient status modulates plant resistance to herbivorous insects?

Adv Biotechnol (Singap)

October 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.

The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.

View Article and Find Full Text PDF

Mining microbial and metabolic dark matter in extreme environments: a roadmap for harnessing the power of multi-omics data.

Adv Biotechnol (Singap)

August 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.

Extreme environments such as hyperarid, hypersaline, hyperthermal environments, and the deep sea harbor diverse microbial communities, which are specially adapted to extreme conditions and are known as extremophiles. These extremophilic organisms have developed unique survival strategies, making them ideal models for studying microbial diversity, evolution, and adaptation to adversity. They also play critical roles in biogeochemical cycles.

View Article and Find Full Text PDF

Exploring the plant lipidome: techniques, challenges, and prospects.

Adv Biotechnol (Singap)

March 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

Plant lipids are a diverse group of biomolecules that play essential roles in plant architecture, physiology, and signaling. To advance our understanding of plant biology and facilitate innovations in plant-based product development, we must have precise methods for the comprehensive analysis of plant lipids. Here, we present a comprehensive overview of current research investigating plant lipids, including their structures, metabolism, and functions.

View Article and Find Full Text PDF

Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!