Significant evidence has shown that soot can be formed from polycyclic aromatic hydrocarbon (PAH) in combustion environments, but the transition of high molecular PAH from the gas phase to soot in a liquid or solid state remains unclear. In this study, the relationships between the boiling points of various planar PAHs and their thermodynamic properties are systematically investigated, to find a satisfactory marker for the phase transition event. Temperature-dependent thermodynamic properties, including entropy, specific heat capacity, enthalpy, and Gibbs free energy, are simultaneously calculated for PAHs, using density functional theory and three composite compound methods. Comparison of the results indicates that the individual G3 method, plus an atomization reaction approach, produces the most accurate thermochemistry parameters. Compared to entropy, enthalpy, and Gibbs free energy, the specific heat capacity at 298 K is found to be a better marker for the boiling point of PAHs due to the observed linear correlation, predictable characteristics, and fidelity of accuracy as a function of temperature. The correlation equation = 10.996 + 122.111 is proposed (where is the boiling temperature (K) and is at 298 K (cal/K/mol)). The standard deviation is as low as 16.7 K when comparing the calculated boiling points and experimentally determined values for 25 different aromatic species ranging from benzene to ovalene (CH). The effects of carbon number, structural arrangement, and partial pressure on the boiling point of large planar PAH are discussed. The results reveal that the carbon number in large planar PAH is the dominant factor determining its boiling points. It is shown that PAHs containing about 60-65 carbon atoms are likely to exist as liquids in flames, although the partial pressure of such species is very low.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.0c01912 | DOI Listing |
ACS Macro Lett
January 2025
Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan.
Vitrimers are sustainable cross-linked polymers characterized by an associative bond exchange mechanism within their network. A well-known feature of vitrimers is the Arrhenius dependence of the viscosity or relaxation time. Another important aspect is the existence of a topology-freezing temperature (), which represents a transition between the viscoelastic solid state and the malleable viscoelastic liquid state.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang University, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, 866 Yuhangtang Road, Xihu District, hangzhou City, 310058, Hangzhou, CHINA.
The separation of xylene isomers is a critical and energy-intensive process in the petrochemical industry, primarily due to their closely similar molecular structures and boiling points. In this work, we report the synthesis and application of a novel core-shell zeolitic imidazolate framework (ZIF) composite, ZIF-65@ZIF-67, designed to significantly enhance the kinetic separation of xylene isomers through a synergistic "shell-gated diffusion and core-facilitated transport" strategy. The external ZIF-67 shell selectively restricts the diffusion of larger isomers (MX and OX), while the internal ZIF-65 core accelerates the diffusion of PX, thereby amplifying the diffusion differences among the isomers.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Physics, Central University of Karnataka, Kadaganchi, Kalaburagi, Karnataka-585367, India.
The isomerization kinetics of a liquid crystalline azobenzene dimer, comprising cyanoazobenzene and naphthalene (NAZ6), were investigated at the air-water interface. The Langmuir monolayers of NAZ6 in both its and states were analyzed using surface manometry techniques. The results revealed that NAZ6 molecules in the -state displayed the coexistence of a disordered liquid-expanded phase and an ordered liquid-condensed phase, whereas no such phase transition was observed in the -state.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, University of Lincoln, Brayford Pool, LN6 7TS Lincoln, United Kingdom.
We analyzed the thermal, structural, and dynamic properties of maghemite using classical molecular dynamics, focusing on bulk and nanoparticle systems. We explored their behavior when heated to high temperatures (above the melting point) and during cooling, as well as under thermal cycles ending at intermediate temperatures. Our findings show that in the bulk system, both the tetrahedral and octahedral iron sub-lattices undergo a phase transition prior to melting.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia.
The crystal and electronic structure of ZrxTi1-xSe2 (0 < x < 1) compounds and their electrical resistivity have been studied in detail for the first time. A combination of soft x-ray spectroscopic methods (XPS, XAS, and ResPES) was used to investigate the electronic structure. The lattice parameters as a function of the metal concentration x obey Vegard's law.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!