Anhydrous proton-conductive materials have attracted great attention in recent years. Doping imidazole as a proton carrier in porous materials, especially pure organic crystalline covalent organic frameworks (COFs), is a promising solution. However, the influence of the hydrogen donor ability of imine functional groups in COFs on the proton conduction has largely been unexplored. Herein, a series of iso-reticular thiophene-based COFs has been synthesized with a similar pore structure and surface area. Different amounts of imidazole were infiltrated to the COFs by vapor diffusion in a highly controlled manner. The introduction of thiophene rings increases the hydrogen bonding donation ability of the imine linker, which resulted in an enhanced proton conductivity of the imidazole-doped COFs by one order of magnitude. The formation of hydrogen bonding between the imine group and imidazole was demonstrated by Fourier transform infrared spectroscopy and density functional theory calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c04002 | DOI Listing |
Nanomicro Lett
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.
View Article and Find Full Text PDFChembiochem
January 2025
Southeast University, School of Biological Science and Medical Engineering, 2 Sipailou, Xuanwu District, 210096, Nanjing, CHINA.
In recent years, antimicrobial peptides (AMPs) have emerged as a potent weapon against the growing threat of antibiotic resistance. Among AMPs, the ones containing tryptophan (W) and arginine (R) exhibit enhanced antimicrobial properties, benefiting from the unique physicochemical features of the two amino acids. Herein, we designed three hexapeptides, including WR, DWR (D-isomer), and RF, derived from the original sequence, RWWRWW-NH2 (RW).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
National Institute of Chemistry Slovenia: Kemijski institut, Inorganic Chemistry and Technology, Hajdrihova 19, 1000, Ljubljana, SLOVENIA.
Efficient CO2 capture at concentrations between 400-2000 ppm is essential for maintaining air quality in a habitable environment and advancing carbon capture technologies. This study introduces NICS-24 (National Institute of Chemistry Structures No. 24), a Zn-oxalate 3,5-diamino-1,2,4-triazolate framework with two distinct square-shaped channels, designed to enhance CO2 capture at indoor-relevant concentrations.
View Article and Find Full Text PDFBiochemistry
January 2025
Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.
In the wake of the pandemic, peptidyl protease inhibitors with Pro-based rigid Leu mimetics at the P position have emerged as potent drug candidates against the SARS-CoV-2 main protease. This success is intuitively attributed to the enhanced hydrophobic interactions and rigidity of Pro-based rigid Leu mimetics in the literature. However, the tertiary amide of proline P derivatives, which hinders the formation of a critical hydrogen bond with the enzyme active site, and the constrained PP conformation, which contradicts the protease preferred β-strand conformation, represent two overlooked disadvantages associated with these inhibitors over traditional inhibitors and, theoretically, should adversely affect their potency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!