Corrosion Behavior of Surface-Treated Metallic Implant Materials.

Materials (Basel)

Laboratory of Biomechanics and Implant Research, Clinic for Orthopedics and Trauma Surgery, Heidelberg University Hospital, 69118 Heidelberg, Germany.

Published: April 2020

Corrosion of taper connections in total hip arthroplasty remains of concern, as particles and ions generated by corrosive processes can cause clinical problems such as periprosthetic osteolysis or adverse reaction to metallic debris. Mechanical surface treatments that introduce compressive residual stresses (RSs) in metallic materials can lead to a better performance in terms of fretting and fatigue and may lower the susceptibility to corrosion. The study investigates the impact of mechanical surface treatments on the corrosion behavior of metallic biomaterials. Compressive RSs were introduced by deep rolling and microblasting in Ti6Al4V and CoCrMo samples. Polished samples served as reference. Corrosion behavior was characterized by repeated anodic polarization. Residual stresses of up to about -900 MPa were introduced by deep rolling with a reach in depth of approximately 500 µm. Microblasting led to compressive RSs up to approximately -800 and -600 MPa for Ti6Al4V and CoCrMo, respectively, in the immediate vicinity of the surface. For Ti6Al4V, microblasting resulted in decreased corrosion resistance with lower breakdown potentials and/or increased passive current densities in comparison to the polished and deep-rolled samples. The corrosion behavior of CoCrMo on the other hand was not affected by the mechanical surface treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254368PMC
http://dx.doi.org/10.3390/ma13092011DOI Listing

Publication Analysis

Top Keywords

corrosion behavior
16
mechanical surface
12
surface treatments
12
residual stresses
8
compressive rss
8
introduced deep
8
deep rolling
8
ti6al4v cocrmo
8
corrosion
7
behavior surface-treated
4

Similar Publications

Running-In Behavior and Failure Mechanism Between AgCuNi Alloy and Au-Electroplated Layer.

Sensors (Basel)

December 2024

State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.

To avoid wear and tear of the slip ring due to electrical corrosion, the slip ring needs to undergo the running-in process under atmospheric conditions without current after assembly. To address the urgent demand for long-service capability space conductive slip rings in the aerospace field, the running-in behavior and failure mechanism between the AgCuNi alloy and Au-electroplated layer are investigated using a ball-on-disc tribometer in this paper. The results show that the transfer film composed of Au plays an important role in modifying the friction during the sliding process.

View Article and Find Full Text PDF

This study presents a comparative analysis of the influence of Ce-Gd and Gd-Y additions on the microstructural evolution, mechanical properties, and electrochemical behavior of extruded Mg-3Zn-Mn-Ca alloy rods. Despite the frequent incorporation of Gd, Y, and Ce as alloying elements in magnesium alloys, the systematic examination of their combined effects on Mg-Zn alloys has been limited. Our findings reveal that both Gd-Ce and Gd-Y additions significantly enhance the mechanical properties of Mg-3Zn-Mn-Ca alloy, although through differing mechanisms.

View Article and Find Full Text PDF

MoS coating is a newly developed method to prevent bolt corrosion and the seizure of bolts used in equipment in sea areas. It is of great significance to investigate the evolution of the tensile properties and intact coatings for the maintenance of coated bolts. To evaluate the tensile properties of MoS-coated titanium alloy bolts, titanium alloy bolts coated with MoS (TC4+MoS) and bolts treated with a composite treatment of anodizing oxidation and MoS coating (TC4+AO+MoS) were corroded in salt spray tests for 4300 h.

View Article and Find Full Text PDF

The objective of this study is to investigate the impact of different pH values and chloropropene flow rates on the erosion-corrosion behavior of 316L stainless steel. The influence of various factors on the surface morphology was analyzed using scanning electron microscopy, X-ray powder diffractometry, and electrochemical impedance spectroscopy techniques. The results revealed that at a pH value of 3.

View Article and Find Full Text PDF

In accordance with German guideline ZTV-ING Part 4, full-locked coil ropes are provided with a three-layer corrosion protection coating based on epoxy resin and polyurethane, which must be renewed regularly. An alternative method is to use a coating of high-density polyethylene (HDPE), which is extruded onto the rope. In this article, the mechanical behavior of the thermoplastic material is studied, taking into account various accelerated aging processes, which are derived from the climatic boundary conditions of a real bridge structure and implemented in tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!