Adolescence is characterized by increased susceptibility to the development of fear- and anxiety-related disorders. Adolescents also show elevated fear responding and aversive learning that is resistant to behavioral interventions, which may be related to alterations in the circuitry supporting fear learning. These features are linked to ongoing adolescent development of medial prefrontal cortical (PFC) inputs to the basolateral amygdala (BLA) that regulate neural activity and contribute to the refinement of fear responses. Here, we tested the hypothesis that the extent of PFC inhibition of the BLA following fear learning is greater in adults than in adolescents, using anesthetized in vivo recordings to measure local field potentials (LFPs) evoked by stimulation of PFC or auditory thalamic (MgN) inputs to BLA. We found that BLA LFPs evoked by stimulation of MgN inputs were enhanced in adults following fear conditioning. Fear conditioning also led to reduced summation of BLA LFPs evoked in response to PFC train stimulation, and increased the capacity of PFC inhibition of MgN inputs in adults. These data suggest that fear conditioning recruits additional inhibitory capacity by PFC inputs to BLA in adults, but that this capacity is weaker in adolescents. These results provide insight into how the development of PFC inputs may relate to age differences in memory retention and persistence following aversive learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215292 | PMC |
http://dx.doi.org/10.3390/ijms21083008 | DOI Listing |
JAMA Netw Open
January 2025
Department of Emergency Medicine, University of Massachusetts Chan Medical School-Baystate, Springfield.
Importance: Despite guideline recommendations to use low-molecular-weight heparins (LMWHs) or direct oral anticoagulants in the treatment of most patients with acute pulmonary embolism (PE), US-based studies have found increasing use of unfractionated heparin (UFH) in hospitalized patients.
Objective: To identify barriers and facilitators of guideline-concordant anticoagulation in patients hospitalized with acute PE.
Design, Setting, And Participants: This qualitative study conducted semistructured interviews from February 1 to June 3, 2024, that were recorded, transcribed, and analyzed in an iterative process using reflexive thematic analysis.
Alzheimers Dement
December 2024
Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: The prevalence of sepsis and delirium in the elderly is a risk factor for subsequent diagnosis of Alzheimer's disease and related dementias (ADRD). Post-sepsis impairments include changes in memory, attention, emotional function, and neuromuscular strength. Studies have shown a link between the prolonged activation of microglia after infection.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Toledo/College of Pharmacy, Toledo, OH, USA.
Background: Primary cilia are solitary membrane-bound organelles emanating from the apical surface of most mammalian cells. They serve as sensory organelles sampling the extracellular environment and reprogramming the transcriptional machinery in response to changes in fluid flow. Ciliopathies, a group of genetic disorders characterized by disrupted cilia structure and/or function, share common phenotypes such as vascular dysfunction and cognitive impairment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Edith Cowan University, Perth, Western Australia, Australia.
Background: Our research group is currently exploring the potential of Butyric acid (NaB), a Short Chain Fatty Acid (SCFA), as a novel therapeutic agent for Alzheimer's disease (AD).
Methods: In our investigation using the 5xFAD mouse model of AD, we observed that NaB had significant effects on Aβ levels, as well as on associative learning and cognitive functioning. Notably, we recorded a 40% reduction in brain Aβ and a 25% increase in fear response during both cued and contextual testing.
Alzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: Over the years, Alzheimer's Disease (AD) has been identified as a multifactorial disease, with cerebral vascular dysfunction being one of the most common and early pathological features. Vascular risk factors (VRF) are thought to further increase AD risk and pathology. Cerebral Amyloid Angiopathy (CAA) is defined as the accumulation of amyloid-beta (Aβ) on the vascular wall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!