Strategies to Preserve Postharvest Quality of Horticultural Crops and Superficial Scald Control: From Diphenylamine Antioxidant Usage to More Recent Approaches.

Antioxidants (Basel)

CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal.

Published: April 2020

Horticultural crops are vulnerable to several disorders, which affect their physiological and organoleptic quality. For about forty years, the control of physiological disorders (such as superficial scald) in horticultural crops, particularly in fruit, was achieved through the application of the antioxidant diphenylamine (DPA), usually combined with controlled atmosphere (CA) conditions. However, identification of DPA residues and metabolites in treated fruits, associated with their toxicity, banned the use of this antioxidant in Europe. This triggered the urgent need for novel and, ideally, natural and sustainable alternatives, combined with adequate storage conditions to protect cultivars from harmful agents. This review systematizes the state-of-the-art DPA application on several fresh cultivars, such as apples, pears, and vegetables (potatoes, spinach, etc.), as well as the possible mechanisms of the action and effects of DPA, emphasizing its antioxidant properties. Alternative methods to DPA are also discussed, as well as respective effects and limitations. Recent research on scald development molecular pathways are highlighted to open new non-chemical strategies opportunities. This appraisal shows that most of the current solutions have not lead to satisfactory commercial results; thus, further research aimed to understand the mechanisms underlying postharvest disorders and to design sustainable and safe solutions to improve horticultural products storage is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222380PMC
http://dx.doi.org/10.3390/antiox9040356DOI Listing

Publication Analysis

Top Keywords

horticultural crops
12
superficial scald
8
dpa
5
strategies preserve
4
preserve postharvest
4
postharvest quality
4
horticultural
4
quality horticultural
4
crops superficial
4
scald control
4

Similar Publications

Intraspecific Variation and Recent Loss of Ancient, Conserved Effector Genes in the Sudden Oak Death Pathogen .

Mol Plant Microbe Interact

January 2025

USDA ARS, Horticultural Crops Research Laboratory, 3420 NW Orchard Ave., Corvallis, Oregon, United States, 97330;

Members of the genus are responsible for many important diseases in agricultural and natural ecosystems. causes devastating diseases of oak, and tanoak stands in US forests and larch in the UK. The four evolutionary lineages involved express different virulence phenotypes on plant hosts, and characterization of gene content is foundational to understanding the basis for these differences.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

In last few decades, the agriculture sector is facing various type of crops diseases originated by crop pests. Among various crops the tomato plant is greatly affected by many pests such as aphids and whiteflies, which are badly decreasing tomato plant yield and effecting its growth. In last few years, various type of pesticides such as Neonicotinoids and Pyrethroids are employed with are badly effecting eco system and water bodies.

View Article and Find Full Text PDF

Rapid introgression of the clubroot resistance gene into cabbage skeleton inbred lines through marker assisted selection.

Mol Breed

February 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.

Unlabelled: Clubroot, caused by , is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the gene, crucial for CR.

View Article and Find Full Text PDF

Introduction: Melatonin significantly enhances the tolerance of plants to biotic and abiotic stress, and plays an important role in plant resistance to salt stress. However, its role and molecular mechanisms in eggplant salt stress resistance have been rarely reported. In previous studies, we experimentally demonstrated that melatonin can enhance the salt stress resistance of eggplants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!