Diblock, Triblock and Cyclic Amphiphilic Copolymers with CO Switchability: Effects of Topology.

Polymers (Basel)

Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

Published: April 2020

The combination of topology and CO switchability could provide new options for amphiphilic copolymers. Cyclic molecules supply novel topologies, and CO switching provides stimulus responsiveness. Cyclic poly(2-(diethylamino)ethyl methacrylate)-b-poly(ethylene oxide) and their corresponding block copolymers were prepared from poly(ethylene oxide) and 2-(diethylamino)ethyl methacrylate via atom transfer radical polymerization and Keck allylation with a Hoveyda-Grubbs catalyst. Changes in conductivity, surface activity, and hydrodynamic size were examined to illustrate the switchability of the produced amphiphilic copolymers upon contact with CO in the presence of water. The reversible emulsification and switchable viscosity behaviors of the copolymers were also demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240586PMC
http://dx.doi.org/10.3390/polym12040984DOI Listing

Publication Analysis

Top Keywords

amphiphilic copolymers
12
copolymers
5
diblock triblock
4
triblock cyclic
4
cyclic amphiphilic
4
copolymers switchability
4
switchability effects
4
effects topology
4
topology combination
4
combination topology
4

Similar Publications

Effect of polymer architecture on the properties and in vitro cytotoxicity of drug formulation: A case study with mono- and di-gradient amphiphilic poly(2-Oxazoline)s.

Eur J Pharm Biopharm

January 2025

Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5 041 54 Kosice, Slovakia; SAFTRA Photonics sro., Moldavska cesta 51 04011 Kosice, Slovakia.

Due to the straightforward single-step synthesis, amphiphilic gradient copoly(2-oxazoline)s are becoming more popular alternative to their block analogue for the development of next-generation drug delivery systems. Here, we investigated the influence of polymer architecture on the physiochemical and biological assessment of nanoformulations formed by the self-assembly of gradient copoly(2-oxazoline)s. Two different architectures were synthesized: hydrophilic-grad-hydrophobic (mono-gradient) and hydrophobic-grad-hydrophilic-grad-hydrophobic (di-gradient) which contained a hydrophilic monomer, 2-ethyl-2-oxazoline (EtOx) and a hydrophobic monomer, 2-phenyl-2-oxazoline (PhOx).

View Article and Find Full Text PDF

This study aims to explore the development of natural bio-based amphiphilic block copolymers for drug delivery applications. We investigated block copolymers derived from tamarind seed xyloglucan and solanesol, focusing on their synthesis, structural analysis, aqueous self-assembly, and drug encapsulation. Specifically, xyloglucan hydrolysate segments with number-average degrees of polymerization (DPs) of between 8 and 44 (XOS, XMS, XMS, XMS, and XMS) were used as the hydrophilic blocks, whereas plant-sourced solanesol was selected as the hydrophobic segment.

View Article and Find Full Text PDF

In this work, laponite (LAP) was used to develop the silver (Ag) based nanocomposite for improved anti-bacterial action and wound healing properties. The amphiphilic co-polymers such as PLGA polymer was embedded with the surface of LAP molecules and polyethyleneimine (PEI) through the interaction of hydrophobic binding and it was formed as LAP/PLA-PEG/PEI formulation through the coupling chemistry. The Ag nanoparticles was loaded into formulation to develop LAP/PLA-PEG/PEI/Ag nanocomposite and characterized by different analytical techniques.

View Article and Find Full Text PDF

Polymeric Nanoarchitectures: Advanced Cargo Systems for Biological Applications.

Macromol Biosci

January 2025

Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands.

Polymeric nanoarchitectures are crafted from amphiphilic block copolymers through a meticulous self-assembly process. The composition of these block copolymers is finely adjustable, bestowing precise control over the characteristics and properties of the resultant polymeric assemblies. These nanoparticles have garnered significant attention, particularly in the realm of biological sciences, owing to their biocompatibility, favorable pharmacokinetics, and facile chemically modifiable nature.

View Article and Find Full Text PDF

Ultrabright aggregation-induced materials for the highly sensitive detection of Ag and T-2 toxin.

Food Chem

January 2025

State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!