Background: Little information is available about the complexity and function of skin cells contributing to the high stability of tattoos. It has been shown that dermal macrophages play an important role in the storage and maintenance of pigment particles. By contrast, the impact of dermal fibroblasts, forming the connective tissue of the skin, on the stability of the tattoo is not known.

Method: In this study, we compared the cell number and the particle load in dermal macrophages versus dermal fibroblasts, isolated from tail skin of tattooed mice.

Results: Microscopic analysis revealed that both cell populations contained the tattoo particles, although in largely different amounts. A small number of macrophages with high side scatter intensity contained a large quantity of pigment particles, whereas a high number of dermal fibroblasts harbored only a few pigment particles. Using the CD64dtr mouse model that allows for selective, diphtheria toxin-mediated depletion of macrophages, we have previously shown that macrophages hold the tattoo in place by capture-release and recapture cycles. In the tattooed skin of macrophage-depleted mice, the content of pigment particles in fibroblasts did not change; however, the total number of fibroblasts carrying particles increased.

Conclusion: The present study demonstrates that dermal macrophages and fibroblasts contribute in different ways to the tattoo stability and further improves our knowledge on tattoo persistence.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000506540DOI Listing

Publication Analysis

Top Keywords

pigment particles
16
dermal macrophages
12
dermal fibroblasts
12
macrophages fibroblasts
8
tattoo stability
8
macrophages
7
tattoo
6
dermal
6
particles
6
fibroblasts
6

Similar Publications

Pigment particles used in tattooing may exert long terms effect by releasing diffusible degradation products. In the present work, aqueous suspensions of the organic orange diazo pigment PO13 were aged by exposure to simulated sunlight at 40 °C. The morphology and the surface charge of PO13 particles were barely modified upon aging, but primary particles were released by de-agglomeration.

View Article and Find Full Text PDF

, a genus of fungi known for its fermentation capability and production of bioactive compounds, such as azaphilone pigments and Monacolin K, have received considerable attention because of their potential in biotechnological applications. Understanding the genetic basis of these metabolic pathways is crucial for optimizing the fermentation and enhancing the yield and quality of these products. However, spp.

View Article and Find Full Text PDF

Nanoscale particles-induced mitigation of tannery wastewater chromium stress in rice: Implications for plant performance and human health risk assessment.

Environ Pollut

December 2024

School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China. Electronic address:

Due to the rapid increase in industrial and urban areas, environmental pollution is increasing worldwide, which is causing unwanted changes in air, water, and soil at biological, physical, as well as chemical levels that ultimately causing the negative effects in living things because of toxic level of chromium (Cr). However, nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. For this purpose, a pot experiment was conducted to examine plant growth and exo-physiology in rice (Oryza sativa L.

View Article and Find Full Text PDF

Dust released from widely established plastic sports courts and synthetic turf poses potential environmental and health risks. Herein, we systematically investigate the metal(loid) characteristics, potential sources, and health risks of 162 dust samples from 17 campuses in Beijing, using complementary analytical techniques. Bulk analysis revealed higher levels of Zn, Pb, Cu, Sb, Cd, and Cr than background values, suggesting excessive anthropogenic contamination.

View Article and Find Full Text PDF

Turbidity flows can transport massive amounts of sediment across large distances with dramatic, long-lasting impacts on deep-sea benthic communities. The 2016 M 7.8 Kaikōura Earthquake triggered a canyon-flushing event in Kaikōura Canyon, New Zealand, which included significant submarine mass wasting, debris, and turbidity flows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!