This study aimed to investigate preservative effects of ethyl lauroyl arginate hydrochloride (LAE) on microbiota, quality, and physiochemical changes of container-cultured largemouth bass fillets stored at 4 °C. The results showed LAE treatment was effective in reducing bacterial growth and attenuating physiochemical changes (flesh color, trichloroacetic acid (TCA)-soluble peptides, total volatile basic nitrogen (TVB-N), ammonia concentration, and biogenic amines) of bass fillets, while had relatively weak effect on the degradation of ATP-related compounds. As a result, LAE treatment retarded the deterioration of sensory attributes, and thus prolonged the shelf-life of largemouth bass fillets for 4 days. In addition, LAE treatment decreased the relative abundance of Pseudomonas in bass fillets, and thus changed the microbial composition. Moreover, correlation analysis between physiochemical changes and bacterial genera showed that Pseudomonas was well correlated with TCA-soluble peptides, TVB-N, ammonia, putrescine and histamine, while Aeromonas tended to have strong potentials in producing ammonia and cadaverine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.126886 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China. Electronic address:
Phenolic acid-chitosan derivatives have received extensive attention due to their greatly enhanced mechanical, antibacterial and antioxidant properties, especially in food preservation. The chitosan-gentianic acid (CS-g-GA) was prepared and its impact on myofibrillar proteins (MPs) in sea bass (Lateolabrax maculatus) during refrigerated storage was investigated in this study. Fish fillets were immersed in distilled water, CS, GA and CS-g-GA solutions, respectively, followed by an 18-day refrigerated storage.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70125 Bari, Italy.
Int J Food Microbiol
January 2025
School of Food Safety, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan. Electronic address:
As global warming and the energy crisis receive increasing attention, the development of ecofriendly functional food packaging materials has also garnered significant interest. In this study, curdlan was combined with foaming agents (Cremodan and xanthan) and a crosslinking agent (sodium trimetaphosphate) to form a porous curdlan hydrogel. The material properties of the curdlan hydrogels were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and a thermogravimetric analysis (TGA).
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy. Electronic address:
The present study investigates the potential interaction between nano‑titanium dioxide (nano-TiO) and the water accommodated fraction (WAF) of crude oil and associated chemicals on bioavailability and biotransformation responses in the European sea bass (Dicentrarchus labrax). An in vivo (48-h) waterborne exposure with nano-TiO (10 mgL), crude oil WAF (0.068 gL), alone and in combination was performed.
View Article and Find Full Text PDFMicroorganisms
September 2024
Unit of Environmental Microbiology, Laboratory of Infectious Disease Surveillance, Faculty of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece.
() is responsible for listeriosis, a serious foodborne disease, with high hospitalization and mortality rates worldwide. The main cause of listeriosis in humans is the consumption of ready-to-eat (RTE) foods; Commission Regulation (EC) No 2073/2005 establishes microbiological criteria for in RTE foods. Raw fish products are widely consumed, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!