Copper-induced spectroscopic and structural changes in short peptides derived from azurin.

Arch Biochem Biophys

Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai, 400005, India. Electronic address:

Published: July 2020

The active sites of metalloproteins may be mimicked by designing peptides that bind to their respective metal ions. Studying the binding of protein ligands to metal ions along with the associated structural changes is important in understanding metal uptake, transport and electron transfer functions of proteins. Copper-binding metalloprotein azurin is a 128-residue electron transfer protein with a redox-active copper cofactor. Here, we report the copper-binding associated spectroscopic and structural properties of peptide loops (11 and 13 residues) from the copper-binding site of azurin. These peptides develop a β-turn upon copper-binding with a 1:1 Cu:peptide stoichiometry as seen in circular dichroism and exhibit electronic transitions centered at 340 nm and 540 nm. Further addition of copper develops a helical feature along with a shift in the absorption maxima to ~360 nm and ~580 nm at 2:1 Cu:peptide stoichiometry, indicating stoichiometric dependence of copper-binding geometry. Mass spectrometry indicates the copper-binding to cysteine, histidine and methionine in the peptide with 1:1 stoichiometry, and interestingly, dimerization through a disulfide linkage at 2:1 stoichiometry, as observed previously for denatured azurin. Fluorescence quenching studies on peptides with tryptophan further confirm the copper-binding induced changes in the two peptides are bi-phasic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2020.108388DOI Listing

Publication Analysis

Top Keywords

spectroscopic structural
8
structural changes
8
metal ions
8
electron transfer
8
cupeptide stoichiometry
8
copper-binding
7
peptides
5
copper-induced spectroscopic
4
changes short
4
short peptides
4

Similar Publications

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

Functionalized Terthiophene as an Ambipolar Redox System: Structure, Spectroscopy, and Switchable Proton-Coupled Electron Transfer.

J Am Chem Soc

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.

Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.

View Article and Find Full Text PDF

The chemical investigation of the fruits of Garcinia schomburgkiana growing in Vietnam led to the isolation of a new anofinic acid derivative, 5-hydroxy-8-methoxyanofinic acid (1), a new xanthone, xanthoschome C (2), and a known synthetic phenolic analogue, 4-(2-hydroxybenzyl)-2-(4-hydroxybenzyl) phenol (3), along with seven known xanthones (4-10). The structures of all isolated compounds were determined using spectroscopic techniques (NMR and MS), in conjunction with comparison to existing literature data. All isolated compounds were assessed for their α-glucosidase inhibitory activity and showed significant inhibition, with IC50 values ranging from 12.

View Article and Find Full Text PDF

Exploring Biophysical and Chemoinformatics Approaches for Interactions of Ionic Liquids with Hemoglobin, DNA, BSA, and HSA.

Chem Biodivers

January 2025

SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.

This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.

View Article and Find Full Text PDF

The crystal and electronic structure of ZrxTi1-xSe2 (0 < x < 1) compounds and their electrical resistivity have been studied in detail for the first time. A combination of soft x-ray spectroscopic methods (XPS, XAS, and ResPES) was used to investigate the electronic structure. The lattice parameters as a function of the metal concentration x obey Vegard's law.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!