Lineage tracing involves the identification of all ancestors and descendants of a given cell, and is an important tool for studying biological processes such as development and disease progression. However, in many settings, controlled time-course experiments are not feasible, for example when working with tissue samples from patients. Here we present ImageAEOT, a computational pipeline based on autoencoders and optimal transport for predicting the lineages of cells using time-labeled datasets from different stages of a cellular process. Given a single-cell image from one of the stages, ImageAEOT generates an artificial lineage of this cell based on the population characteristics of the other stages. These lineages can be used to connect subpopulations of cells through the different stages and identify image-based features and biomarkers underlying the biological process. To validate our method, we apply ImageAEOT to a benchmark task based on nuclear and chromatin images during the activation of fibroblasts by tumor cells in engineered 3D tissues. We further validate ImageAEOT on chromatin images of various breast cancer cell lines and human tissue samples, thereby linking alterations in chromatin condensation patterns to different stages of tumor progression. Our results demonstrate the promise of computational methods based on autoencoding and optimal transport principles for lineage tracing in settings where existing experimental strategies cannot be used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209334 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1007828 | DOI Listing |
Chem Sci
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.
View Article and Find Full Text PDFChem Sci
January 2025
State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.
View Article and Find Full Text PDFNbO(OH) has emerged as a highly attractive photocatalyst based on its chemical stability, energetic band positions, and large active lattice sites. Compared to other various photocatalytic semiconductors, it can be synthesized easily. This study presents a systematic analysis of pristine and doped NbO(OH) based on recent developments in related research.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Electrical Engineering, Sarhad University of Information Technology Peshawar 25000 Pakistan.
The growing demand for efficient, stable, and environmentally friendly photovoltaic technologies has motivated the exploration of nontoxic perovskite materials such as KGeCl. However, the performance of KGeCl-based perovskite solar cells (PSCs) depends heavily on the compatibility of charge transport layers (CTLs) and optimization of device parameters. In this study, six PSC configurations were simulated using SCAPS-1D software, incorporating CTLs such as Alq, CSTO, VO, PB, and SbS.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!