Local pathogens can accumulate as asymptomatic endophytes, making it difficult to detect the impacts of invasive species as propagators of disease in the invaded range. We used the invasive plant Ageratina adenophora to assess such accumulation. We intensively collected foliar fungal endophytes and leaf spot pathogens of A. adenophora and co-occurring neighbours and performed an inoculation experiment to evaluate their pathogenicity and host range. Ageratina adenophora harboured diverse necrotrophic pathogens; its communities of endophytes and leaf spot pathogens were different in composition and shared only a small number of fungal species. In the pathogen communities of local plant hosts, 21% of the operational taxonomic units (OTUs), representing 50% of strains, also occurred as leaf spot pathogens and/or endophytes of A. adenophora. The local pathogen community was more similar to the endophytes than to the pathogens of A. adenophora. The inoculation experiment showed that local pathogens could infect A. adenophora leaves asymptomatically and that local plant hosts were susceptible to both A. adenophora endophytes and pathogens. Ageratina adenophora is a highly competent host for local pathogens, and its asymptomatic latent pathogens are fungi primarily shared with local neighbours. This poses challenges for understanding the long-term ecological consequences of plant invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.16624DOI Listing

Publication Analysis

Top Keywords

ageratina adenophora
16
local pathogens
12
leaf spot
12
spot pathogens
12
pathogens
11
foliar fungal
8
invasive plant
8
plant ageratina
8
endophytes leaf
8
pathogens a adenophora
8

Similar Publications

Eupatorium adenophorum (Ageratina adenophora) is regarded as an invasive weed in many regions of the world. Yet, it is notable for its possible therapeutic uses, including the treatment of blood coagulation, antibacterial, anti-inflammatory, antiseptic, analgesic, and other ailments. Till now, there is not much information available regarding the molecular characterization of E.

View Article and Find Full Text PDF

Description of Massilia orientalis sp. nov., Isolated from Rhizosphere Soil of Ageratina adenophora.

Curr Microbiol

December 2024

Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.

A novel bacteria strain, designated YIM B02787, was isolated from rhizosphere soil of Ageratina adenophora, in Yunnan, southwest China. The strain was aerobic, Gram-stain-negative, rod-shaped and motile with one polar flagellum. Growth occurred at 4-45 °C (optimum, 20-30 °C) and pH 6.

View Article and Find Full Text PDF

Relict subtropical coniferous forests in China face severe fragmentation, resulting in declining populations, and some are under significant threat from invasive alien species. Despite the crucial importance of understanding forest dynamics, knowledge gaps persist, particularly regarding the impact of invasive plants on vulnerable natives like . In this study, we investigated the impact of invasive plants on the regeneration of forests dominated by .

View Article and Find Full Text PDF

Methicillin-resistant (MRSA) is a highly threatening foodborne pathogen capable of causing severe organ and life-threatening diseases. Over the past years, various commercial antibiotics have been used to treat MRSA infections. However, these commercial antibiotics have not yielded efficient results and also cause other side effects; therefore, there is a need for the development of effective alternatives to replace these commercial antibiotics.

View Article and Find Full Text PDF

Complete genome sequence of an umbravirus from white snakeroot (Ageratina altissima).

Arch Virol

September 2024

Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, 39762, USA.

Complete genome sequencing of a virus from a white snakeroot plant (Ageratina altissima (L.) King & H. Rob.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!