Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To present the reader with different approaches used to compare immunogenicity methods when changes are needed during a clinical program. Five case studies are presented, in the first two case studies, the approach utilized a small sample size for the comparison. In the third case, all samples from a study were analyzed by both methods. In the fourth case, the intended use of noncomparable assays in an integrated summary drove design of experiments to establish the expected limits of pooling data. In the fifth case, a selectivity approach was used as an alternate to use of incurred samples. When data pooling across methods is needed, it is important to define the limits of comparability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/bio-2019-0300 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!