Candidate gene associations reveal sex-specific Graves' disease risk alleles among Chinese Han populations.

Mol Genet Genomic Med

Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Published: July 2020

Background: With several susceptibility single nucleotide polymorphisms identified by case-control association studies, Graves' disease is one of the most common forms of autoimmune thyroid disease. In this study, we aimed to determine whether any observed differences in genetic associations are influenced by sex in Chinese Han populations.

Methods: A total of 8,835 patients with Graves' disease and 9,936 sex-matched healthy controls were enrolled in the study. Confirmed by a two-staged association analysis, sex-specific analyses among 20 Graves' disease susceptibility loci were conducted.

Results: A significant sex-gene interaction was detected primarily at rs5912838 on Xq21.1 between the GPR174 and ITM2A genes, whereby male Graves' disease patients possessed a significantly higher frequency of risk alleles than their female counterparts. Interestingly, compared to women, male patients with Graves' disease had a higher cumulative genetic risk and higher persistent thyroid stimulating hormone receptor antibody-positive rate after receiving antithyroid drug therapy for at least 1 year.

Conclusion: The findings of this study suggest the existence of one potential sex-specific Graves' disease variant on Xq21.1. This could increase our understanding of the pivotal mechanism behind Graves' disease and ultimately aid in identifying possible therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336758PMC
http://dx.doi.org/10.1002/mgg3.1249DOI Listing

Publication Analysis

Top Keywords

graves' disease
32
disease
9
graves'
8
sex-specific graves'
8
risk alleles
8
chinese han
8
patients graves'
8
candidate gene
4
gene associations
4
associations reveal
4

Similar Publications

Purpose: Graves' ophthalmopathy (GO), the most common extrathyroidal manifestation of Graves' disease, is disabling and disfiguring. Recent studies have shown that statins have a protective effect on individuals with GO. Statins were reported to trigger ferroptosis in some disorders, but little is known about whether statins protect against GO via ferroptosis.

View Article and Find Full Text PDF

Accurate rapid diagnostic tests (RDTs) are needed to diagnose lymphatic filariasis (LF) in global elimination programmes. We evaluated the performance of the new STANDARD Q Filariasis Antigen Test (QFAT) against the Bioline Filariasis Test Strip (FTS) for detecting antigen (Ag) in laboratory conditions, using serum (n = 195) and plasma (n = 189) from LF-endemic areas (Samoa, American Samoa and Myanmar) and Australian negative controls (n = 46). The prior Ag status of endemic samples (54.

View Article and Find Full Text PDF

Turner syndrome (TS) can be determined by karyotype analysis, marked by the loss of one X chromosome in females. However, the genes involved in autoimmunity in TS patients remain unclear. In this study, we aimed to analyze differences in immune gene expression between a patient with TS, a healthy female, and a female patient with Graves' disease using single-cell RNA sequencing (scRNA-seq) analysis of antigen-specific CD4(+) T cells.

View Article and Find Full Text PDF

Background: Children from racial and ethnic minority groups are at greater risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether they have increased risk for post-acute sequelae of SARS-CoV-2 (PASC). Our objectives were to assess whether the risk of respiratory and neurologic PASC differs by race/ethnicity and social drivers of health.

Methods: We conducted a retrospective cohort study of individuals <21 years seeking care at 24 health systems across the U.

View Article and Find Full Text PDF

Graves' disease is caused by overactivation of the thyroid-stimulating hormone receptor (TSHR). One approach for its treatment may be the use of negative allosteric modulators (NAM) of TSHR, which normalize TSHR activity and do not cause thyroid hormone (TH) deficiency. The aim of the work was to study the effect of a new compound 5-amino-4-(4-bromophenyl)-2-(methylthio)thieno[2,3-d]pyrimidine-6-carboxylic acid N-tert-butylamide (TPY4) on the basal and TSH-stimulated TH production in cultured FRTL-5 thyrocytes and on basal and thyrotropin-releasing hormone (TRH)-stimulated TH levels in the blood of rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!